• Title/Summary/Keyword: satellite drag

Search Result 49, Processing Time 0.026 seconds

VARIATION OF LOCAL TIME OF ASCENDING NODE DUE TO THE ALTITUDE DECAY OF SUN-SYNCHRONOUS SATELLITE (태양동기위성의 고도감소에 의한 승교점 통과시각의 변화)

  • Lee Byoung-Sun;Hwang Yoo-La;Kim Hae-Yeon;Yoon Jae-Cheol;Kim Hae-Dong;Kim Jae-Hoon
    • Journal of Astronomy and Space Sciences
    • /
    • v.23 no.2
    • /
    • pp.127-134
    • /
    • 2006
  • Variation of the Local Time of Ascending Node (LTAN) has been analysed according to initial inclinations when the altitude of Sun-synchronous satellite is continuously decreased due to the atmospheric drag. Orbit predictions of 3 years have been performed with the satellite of 500 km altitude when the initial LTAN were set to 06:00, 09:00, 12:00, 15:00, and 18:00. Different profiles of the inclination and LTAN have been obtained according to the satellite altitude decay and initial LTAN value. Using the profiles of the inclination and LTAN, initial orbital elements can be derived for minimizing the LTAN variations during the mission life time of the sun-synchronous satellite without any on-board thrusters for orbit maneuvers.

NORAD TLE CONVERSION FROM OSCULATING ORBITAL ELEMENT

  • Lee, Byoung-Sun
    • Journal of Astronomy and Space Sciences
    • /
    • v.19 no.4
    • /
    • pp.395-402
    • /
    • 2002
  • The NORAD type Two Line Element (TLE) was obtained from the osculating orbital elements by an iterative approximation procedure. The mathematical model was presented and computer program was developed for the conversion. The osculating orbital elements of the KOMPSAT-1 were converted into the NORAD TLE. Then the effect of the SGP4 atmospheric drag coefficient ($B^*$) was analyzed by comparison of the orbit propagation results with different $B^*$ values.

An Orbit Robust Control Based on Linear Matrix Inequalities

  • Prieto, D.;Bona, B.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.454-459
    • /
    • 2004
  • This paper considers the problem of satellite's orbit control and a solution based in Linear Matrix Inequalities (LMI) is proposed for the case of Low Earth Orbiters (LEO). In particular, the modelling procedure and the algorithm for control law synthesis are tested using as study case the European Gravity Field and Ocean Circulation Explorer satellite (GOCE), to be launched by the European Space Agency (ESA) in the year 2006. The scientific objective of this space mission is the recovering of the Earth gravity field with high accuracy (less than 10${\mu}m$/${\mu}m$) and spatial resolution (better than 100km). In order to meet these scientific requirements, the orbit control must guarantee stringent specifications in terms of environmental disturbances attenuation (atmospheric drag forces) even in presence of high levels of model uncertainty.

  • PDF

Precision Orbit Propagator for Low Earth Orbiters (저궤도 위성용 정밀궤도 계산모델 개발)

  • Kim, Jeong-Rae;Noh, Jeong-Ho;Kee, Chang-Don
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.6
    • /
    • pp.900-909
    • /
    • 2012
  • Low Earth orbit satellites with satellite navigation receiver use onboard navigation filters for filtering measurement signals and for orbit prediction under signal loss. Precision satellite dynamic models, core of the navigation filter, are studied and a computation program is developed. Gravity acceleration, precision coordinate transform, third-body gravity, atmospheric drag, and solar radiation pressure models are combined into an orbit prediction algorithm, and a proven precision orbit determination software is used to validate the program. Orbit prediction accuracy is analyzed with simulated and flight orbit data. The program meets an accuracy level for onboard real-time navigation filter.

Fuel-Optimal Altitude Maintenance of Low-Earth-Orbit Spacecrafts by Combined Direct/Indirect Optimization

  • Kim, Kyung-Ha;Park, Chandeok;Park, Sang-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.4
    • /
    • pp.379-386
    • /
    • 2015
  • This work presents fuel-optimal altitude maintenance of Low-Earth-Orbit (LEO) spacecrafts experiencing non-negligible air drag and J2 perturbation. A pseudospectral (direct) method is first applied to roughly estimate an optimal fuel consumption strategy, which is employed as an initial guess to precisely determine itself. Based on the physical specifications of KOrea Multi-Purpose SATellite-2 (KOMPSAT-2), a Korean artificial satellite, numerical simulations show that a satellite ascends with full thrust at the early stage of the maneuver period and then descends with null thrust. While the thrust profile is presumably bang-off, it is difficult to precisely determine the switching time by using a pseudospectral method only. This is expected, since the optimal switching epoch does not coincide with one of the collocation points prescribed by the pseudospectral method, in general. As an attempt to precisely determine the switching time and the associated optimal thrust history, a shooting (indirect) method is then employed with the initial guess being obtained through the pseudospectral method. This hybrid process allows the determination of the optimal fuel consumption for LEO spacecrafts and their thrust profiles efficiently and precisely.

Orbit Determination Using SLR Data for STSAT-2C: Short-arc Analysis

  • Kim, Young-Rok;Park, Eunseo;Kucharski, Daniel;Lim, Hyung-Chul
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.3
    • /
    • pp.189-200
    • /
    • 2015
  • In this study, we present the results of orbit determination (OD) using satellite laser ranging (SLR) data for the Science and Technology Satellite (STSAT)-2C by a short-arc analysis. For SLR data processing, the NASA/GSFC GEODYN II software with one year (2013/04 - 2014/04) of normal point observations is used. As there is only an extremely small quantity of SLR observations of STSAT-2C and they are sparsely distribution, the selection of the arc length and the estimation intervals for the atmospheric drag coefficients and the empirical acceleration parameters was made on an arc-to-arc basis. For orbit quality assessment, the post-fit residuals of each short-arc and orbit overlaps of arcs are investigated. The OD results show that the weighted root mean square post-fit residuals of short-arcs are less than 1 cm, and the average 1-day orbit overlaps are superior to 50/600/900 m for the radial/cross-track/along-track components. These results demonstrate that OD for STSAT-2C was successfully achieved with cm-level range precision. However its orbit quality did not reach the same level due to the availability of few and sparse measurement conditions. From a mission analysis viewpoint, obtaining the results of OD for STSAT-2C is significant for generating enhanced orbit predictions for more frequent tracking.

Orbit determination for the KOMPSAT-1 Spacecraft during the period of the solar maximum

  • Kim, Hae-Dong;Kim, Eun-Kyou;Choi, Hae-Jin
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.6 no.1
    • /
    • pp.71-76
    • /
    • 2005
  • The KOMPSAT-1 satellite, launched into a circular sun synchronous orbit on Dec. 21, 1999, entered its$6^{th}$year of successful operation this year. The purposes of the mission are to collect earth images (6.6 m resolution), multi-spectral images of the ocean, and to collect information on the particle environment of the low earth orbit. For normal operation, KOMPSAT-1 orbits are determined using GPS navigation solutions. However, at the start of the life of KOMPSAT-1, the 11-year solar activity cycle was at a maximum. Solar flux was maintained at this level until 2002, and thereafter reduced to a moderate level by 2004. Thus, the OD (Orbit Determination) accuracy has varied according to the solar activity. This paper presents the degree to which the OD accuracy could be degraded during a high solar activity period compared with that of a (relatively) low solar activity period. We investigated the effect of the use of solve-for parameters such as a drag coefficient ($C_D$), solar radiation coefficient ($C_R$), and the general accelerations ($G_A$) on OD accuracy with solar activity. For the evaluation of orbit determination accuracy, orbit overlap comparison is used since no independent orbits of comparable accuracy are available for comparison. The effect of the use of a box-wing model instead of a constant cross-sectional area is also investigated.

THE ORBIT DETERMINATION OF LEO SATELLITES USING EXTENDED KALMAN FILTER (확장 칼만 필터를 이용한 LEO 위성의 궤도결정 방법)

  • 손건호;김광렬;최규홍
    • Journal of Astronomy and Space Sciences
    • /
    • v.12 no.1
    • /
    • pp.133-142
    • /
    • 1995
  • We studied the nonlinear estimation problem of extended Kalman filter and appled this method to LEO satellite system. Through this method the performance of extended Kalman filter was analyzed. There were certain presumption taken; J2 and atmospheric drag were simply considered in the dynamic model of LEO satellite and the system noise error of $\sigma_r$=150m, $\sigma_r$=10m/s was presumed in the observation data. As results of this simulation, the overall state estimation errors of extended Kalman filter were within the presumed error range and also the ability of performance was maximized when the condition was the state process noise Q has the 1/10 level of covariance matrix Po.

  • PDF

ESTIMATION OF ORBITAL DECAY FOR THE SOVIET SATELLITE COSMOS 1402 (소련 위성 COSMOS 1402호의 낙하 추정)

  • 이정숙;최규홍;김천휘
    • Journal of Astronomy and Space Sciences
    • /
    • v.6 no.2
    • /
    • pp.101-108
    • /
    • 1989
  • The algorithm was developed for the estimation of orbital decay of the Soviet Satellite COMOS 1402 which divides into three body-COSMOS 14020-A, B and C-and fell down early in 1983. The perturbation effects due to the nonspherical geopotential and air drag were considered and the standard atmospheric model were built for obtaining the atmospheric density as a function of the height. The orbital elements of NASA GSFC during orbital decay used in estimation of orbital decay. We compared the estimation values with the published ones of the American State Department. In the case of COSMOS 1402-C, the estimated values accorded with the published ones but, in the case of COSMOS 1402-A, the decay time and the approximated position differed respectively one minute and two degrees in both latitude and longitude from the published ones.

  • PDF

Precise Orbit Determination of LEO Satellite Using Dual-Frequency GPS Data (이중 주파수 GPS 데이터를 이용한 저궤도 위성의 정밀궤도결정)

  • Hwang, Yoo-La;Lee, Byoung-Sun;Kim, Jae-Hoon;Yoon, Jae-Cheol
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.2
    • /
    • pp.229-236
    • /
    • 2009
  • KOorea Multi-purpose SATellite(KOMPSAT)-5 will be launched at 550km altitude in 2010. Accurate satellite position(20 cm) and velocity(0.03 cm/s) are required to treat highly precise Synthetic Aperture Radar(SAR) image processing. Ionosphere delay was eliminated using dual frequency GPS data and double differenced GPS measurement removed common clock errors of both GPS satellites and receiver. SAC-C carrier phase data with 0.1 Hz sampling rate was used to achieve precise orbit determination(POD) with ETRI GNSS Precise Orbit Determination(EGPOD) software, which was developed by ETRI. Dynamic model approach was used and satellite's position, velocity, and the coefficients of solar radiation pressure and drag were adjusted once per arc using Batch Least Square Estimator(BLSE) filter. Empirical accelerations for sinusoidal radial, along-track, and cross track terms were also estimated once per revolution for unmodeled dynamics. Additionally piece-wise constant acceleration for cross-track direction was estimated once per arc. The performance of POD was validated by comparing with JPL's Precise Orbit Ephemeris(POE).