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by Combined Direct/Indirect Optimization
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This work presents fuel-optimal altitude maintenance of Low-Earth-Orbit (LEO) spacecrafts experiencing non-negligible air 
drag and J2 perturbation. A pseudospectral (direct) method is first applied to roughly estimate an optimal fuel consumption 
strategy, which is employed as an initial guess to precisely determine itself. Based on the physical specifications of KOrea 
Multi-Purpose SATellite-2 (KOMPSAT-2), a Korean artificial satellite, numerical simulations show that a satellite ascends 
with full thrust at the early stage of the maneuver period and then descends with null thrust. While the thrust profile is 
presumably bang-off, it is difficult to precisely determine the switching time by using a pseudospectral method only. 
This is expected, since the optimal switching epoch does not coincide with one of the collocation points prescribed 
by the pseudospectral method, in general. As an attempt to precisely determine the switching time and the associated 
optimal thrust history, a shooting (indirect) method is then employed with the initial guess being obtained through the 
pseudospectral method. This hybrid process allows the determination of the optimal fuel consumption for LEO spacecrafts 
and their thrust profiles efficiently and precisely.
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1. INTRODUCTION

Operating an Earth-observing satellite at sufficiently 

lower altitudes can improve its spatial resolution and help 

a satellite sensor identify smaller details of ground objects. 

While QuickBird, a typical high-resolution commercial 

Earth-observing satellite owned by DigitalGlobe, collects 

the panchromatic imagery at a resolution of 61 cm and 

an altitude of 450 km, KOrea Multi-Purpose SATellite-2 

(KOMPSAT-2) in a 685 km sun-synchronous orbit has a 

resolution of 1m (Kim 2013). If KOMPSAT-2 were able 

to observe the ground object at a lower altitude, it could 

have distinguished more details with a better resolution. 

However, with the lowering of the operating altitude of 

a satellite and without a proper altitude maintenance 

management, the atmospheric drag becomes stronger to 

ultimately cause its reentry into the Earth. Therefore, for the 

altitude maintenance of Low-Earth-Orbit (LEO) spacecrafts, 

fuel-optimal strategy becomes highly critical, as it saves cost 

and extends the lifetime of the mission as well.

Park et al.(2007) analyzed the effect of drag on orbital 

variations of KOMPSAT-1 during strong solar and geomagnetic 

activities. Halbach(2000) presented a numerical study of 

an optimal periodic thrusting method for LEO spacecrafts 

using the Legendre-Gauss-Lobatto (LGL) pseudospectral 

collocation codes developed at Naval Postgraduate School. 

Park et al.(2008) studied the amount of fuel required to 

maintain a very low-Earth-orbit with severe air drag using 

a collocation method. These studies considered air drag as 

the only perturbation force and acquired solutions using a 

direct collocation method. However, the actual motion of 

such satellites in real environments is also affected by other 

gravitational and non-gravitational perturbations owing to the 

irregular shape of the Earth (Jo et al. 2011).

In this study, the J2 perturbation, which has significant 

effect on LEO spacecrafts, is considered along with air 
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drag. Also, both a pseudospectral (direct) and a shooting 

(indirect) method are used together to improve the accuracy 

of optimization results obtained from previous studies. 

For numerical simulations, the physical characteristics 

of KOMPSAT-2, a Korean satellite, are used, and the 

atmospheric density model from Ionospheric Prediction 

Service (IPS) Radio and Space Services (Kennewell 1999) is 

used to reflect highly dominant air density variation caused 

by solar activity.

The rest of this paper is organized as follows. Section 

2 formally presents a fuel-optimal altitude maintenance 

problem including the objective function, and the governing 

equations of motion and equality/inequality constraints. 

Necessary conditions for optimality, such as the costate 

equations and the transversality conditions are also derived 

for the indirect optimization method. Section 3 proposes the 

key process for combining the direct and indirect methods. 

Section 4 presents simulation results of fuel optimization 

under various circumstances and the corresponding 

analyses. Finally, the last section presents the conclusions 

drawn from the study.

2. PROBLEM FORMULATION

2.1 Altitude Maintenance Problem

First, an objective function to minimize the fuel consumption 

is defined as
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vector; the thrust components are expressed as (Tx, Ty, 

Tz)=(Tcosβcosα, Tcosβsinα, Tcosβ), where α∈ [0,2π] and 

β∈ [-π/2, π/2] represent the longitudinal and latitudinal 

steering angles, respectively (Fig. 1); ve is the exhaust 

velocity; ρ is the atmospheric density; CD is the drag 

coefficient, and A is the cross-sectional area of a spacecraft; 

μ is the gravitational parameter of the Earth, J
2
 is the 

oblateness factor, and R⊕ is the mean radius of the Earth.

For altitude maintenance, a lower limit is imposed on the 

altitude as an inequality constraint:

	 r(t) - rref ≥ 0� (3)

where, rref is the radius of the reference orbit. In addition, the 

capacity of a thruster is imposed as an inequality constraint:

	 0 ≤ |T(t)| ≤ Tmax� (4)

where, Tmax is the maximum thrust. The spacecraft is assumed 

to be initially located on the x-axis at the initial time without 

loss of generality and to have a circular velocity at the 

corresponding altitude:
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0
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 is the initial circular speed, 

and m
0
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the radius of the reference orbit and the time it takes a 

spacecraft to move 1 radian in the reference orbit are used 

as Distance Unit (DU) and Time Unit (TU), respectively. 

Then, the normalized equations of motion are expressed as 

follows (Kim 2014):
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2.2 Necessary Conditions for Optimality

To apply the indirect method, the 1st-order necessary 

conditions for optimality should be derived. In this case, 

Eqs. (10) and (11) are used instead of Eqs. (1) and (7), 

respectively, for simplicity in derivation.
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Note that the (-) sign of the sine and cosine in Eq. (14) comes from the second-order convexity condition 
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3. ALTITUDE MAINTENANCE ALGORITHM  
 

In general, a direct method is less sensitive to the initial guess, but shows slow convergence and is 
not highly accurate. An indirect method converges fast with a proper initial guess of costates, but it is 
difficult to estimate the initial costates themselves. Given the objective function, governing equation, and 
associated equality/inequality constraints, the optimal fuel consumption and associated thrust profile are 
calculated using both pseudospectral (direct) and shooting (indirect) methods. In this manner, a hybrid 
approach combining the direct and indirect methods is proposed. 

In a pseudospectral method, the state and control variables are approximated at predetermined 
collocation points (Halbach 2000). In this study, LGL points are used for the discretization of the system, and 
Lagrange polynomials are used as trial functions (Elnagar et al. 1995). Fig. 2 shows the flowchart of fuel 
optimization algorithm based on the pseudospectral method (Kim 2014). The input values are the number of 
LGL points, information of an assigned orbit, physical specifications of a spacecraft and its thruster, and 
indices associated with air density. In this method, the states and control guesses at the LGL points should be 
provided. The differentiation matrix (Djk), LGL points (tk), and weights (wk) are determined via a subroutine 
(lglpoints) (Elnagar et al. 1995). Then, the states and control variables satisfying the constraints while 

minimizing the objective function are calculated through the ‘fmincon’ in the optimization Toolbox of 

MATLAB. The ‘fmincon’ attempts to find a constrained minimum of a scalar function of multiple variables 
starting at an initial estimate (MathWorks 2015a). 
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the pseudospectral method. As an attempt to precisely 

determine the switching time and its associated optimal 

thrust history, a shooting method is employed with its initial 

guess obtained from the solution of the pseudospectral 

method. Fig. 4 shows the flowchart of a fuel optimization 

algorithm based on a shooting method. Pontryagin’s 

principle (Pontryagin 1987) yields an optimality strategy for 

thrust magnitude 
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When S has a value near ‘0’, it is difficult to numerically define its sign. In order to prevent this numerical 
obscurity, the switching epoch is estimated on the basis of the time history of simulation results using a 
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The process of updating the initial guesses is iterated until 

the transversality conditions are satisfied, and this process 

of solving nonlinear algebraic equations is performed using 

the MATLAB built-in function, ‘fsolve’. The ‘fsolve’ finds a 

root (zero) of a system of nonlinear equations (MathWorks 

2015b).

4. SIMULATION RESULTS AND DISCUSSIONS

In the altitude maintenance scenario, the assigned 

altitude is 300 km and a spacecraft starts on the assigned 

altitude with circular velocity. The physical characteristics 

of the spacecraft (KOMPSAT-2) and the specifications of the 

thruster are presented in Table 1.

Fig. 5 and Table 2 show that the obscure switching time 

obtained using the pseudospectral method is precisely 

determined by applying the shooting method. From the time 

history of the pseudospectral method, the switching time 

could be guessed within the range of 9–11 hr. Table 3 shows 

Fig. 4. Flowchart for fuel optimization using a shooting method.

Fig. 5. Results of fuel optimization (time histories of altitude, thrust, and 
mass) using pseudospectral (left) and combined (right) methods.
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Table 1. Specifications of satellite and its thruster

Satellite
Mass Cross-Sectional Area Drag Coefficient

800 kg 13.6 m2 3.4

Thruster
Max. Thrust Specific impulse

0.1 N 224 s
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that a guess selected within this range leads to a proper 

(local) optimal solution satisfying the altitude maintenance 

constraints. In contrast, if the guess of switching time is 

(deliberately) selected outside this range, a non-compatible 

solution without satisfying the given altitude constraint 

is generated. This implies that the proposed combined 

approach can be effectively used for this type of numerically 

sensitive problems.

Figs. 6–8 show optimization results with different 

atmospheric densities (caused by solar activity) using 

the pseudospectral and combined methods in which the 

atmospheric model offered by the Australian IPS Radiation 

& Space Services is implemented (Kennewell 1999). The 

time for a spacecraft to reach the peak altitude and the 

switching moment is delayed as the solar activity becomes 

stronger. For the case of maximum solar activity (Fig. 6), the 

spacecraft raises its altitude for about 2/3 of the operation 

time, and then drops rapidly for about 1/3 of the operation 

time owing to the high atmospheric density. In contrast, 

when solar activity is weak (Fig. 8), a spacecraft reaches the 

peak altitude at about 1/4 of the operation time, and then 

descends slowly for the remaining operation time. Fuel 

consumption for the case of maximum solar activity is about 

three times larger than that for minimum solar activity (Table 

4).

Table 5 shows optimization results with different maneuver 

periods. Fuel consumption increases with the maneuver 

period, but this increase is not proportional. For example, 

the fuel consumption for 5 days is less than that for 1 day 

multiplied by 5. This is because a spacecraft reaches higher 

altitude where atmospheric density is lower when the 

maneuver period is longer. KOMPSAT-2 collects panchromatic 

imagery at 1m resolution with Instantaneous Field of View 

(IFOV) 1.46 µm at an altitude of 685 km. Based on the IFOV of 

KOMPSAT-2, Ground Sampling Distance (GSD) is calculated 

using the relation between GSD and altitude (Park et al. 2008). 

GSD could be improved to be under 0.5 by lowering the 

altitude of spacecraft.

Fig. 9 shows simulation results considering the J2 effect 

with atmospheric drag. Orbit inclination was set as 45 deg. 

A periodic change in altitude of about 13 km occurred due 

to the effect of J2. The time histories of longitudinal and 

latitudinal steering angles indicate that the thrust is applied 

Table 2. Comparison between results of pseudospectral and combined 
methods

Optimization Method PS Combined
Fuel Consumption (kg) 1.730 1.718

Peak Altitude (km) 304.256 304.574

Final Altitude (km) 299.899 299.861

Switching Time (hr) - 10.488

Table 3. Simulation results of pseudospectral method with switching 
time guess

Switching Time Guess (hr) 5 20
Fuel Consumption (kg) 0.751 3.071

Peak Altitude (km) 301.917 308.543

Final Altitude (km) 294.529 306.621

Switching Time (hr) 4.581 18.742

Fig. 6. Simulation results for maximum solar activity using pseudospectral 
(left) and combined (right) methods.

Fig. 8. Simulation results for minimum solar activity using pseudospectral 
(left) and combined (right) methods.

Fig. 7. Simulation results for mean solar ativity using pseudospectral (left) 
and combined (right) methods.
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along the direction of velocity vector. Table 6 confirms that a 

spacecraft uses about 30% more fuel when J2 perturbation is 

active, and thus it has remarkable effect on fuel-optimality 

of LEO spacecrafts.

5. CONCLUSION

	 Pseudospectral and shooting methods were combined 

to optimize the fuel consumption for altitude maintenance 

of spacecrafts at 300 km circular orbits where atmospheric 

drag is sufficiently strong to cause orbital decay. Based on 

the physical characteristics of KOMPSAT-2, simulations 

showed that a satellite ascended with full thrust at the early 

stage and then descended with null thrust. While the thrust 

profile was similar to bang-off, it was difficult to precisely 

determine the switching time by using only a pseudospectral 

method. As an attempt to precisely determine the switching 

time and its associated optimal thrust history, a shooting 

method was employed with its initial guess obtained from 

a solution using the pseudospectral method. By analyzing 

the results with solar activity, fuel consumption during the 

maximum solar activity was found to be three times more 

than that during the minimum solar activity. This implies 

that the solar activity cycle is a critical factor while designing 

a LEO mission. Furthermore, fuel consumption was reduced 

when the maneuver period of satellites was increased. 

This is possible because with extended maneuver periods, 

satellites reach higher altitudes where the atmospheric drag 

Table 4. Comparison between results of pseudospectral and combined methods for solar activity

Solar Activity Maximum Mean Minimum
Optimization Method PS Combined PS Combined PS Combined

Fuel Consumption(kg) 2.689 2.666 1.730 1.718 0.9433 0.878
Peak Altitude(km) 303.815 304.027 304.256 304.574 303.213 303.423
Final Altitude(km) 299.884 299.893 299.899 299.861 299.912 299.657

Switching Time(hr) - 16.271 - 10.488 - 5.360
Atmospheric Density(kg/m3) 5.189e-11 3.379e-11 1.833e-11

Table 5. Simulation results of combined method with maneuver period

Maneuver Period(day) 1 3 5 7
Fuel Consumption(kg) 1.718 4.671 7.422 9.356

Peak Altitude(km) 304.574 313.289 322.269 329.271
Final Altitude(km) 299.861 299.337 300.745 298.993
Switching Time(hr) 10.488 28.510 45.304 57.107

GSD(m) 0.445 0.457 0.471 0.481

Table 6. Simulation results of combined method with J2 perturbation

Perturbation Drag Only Including J2

Fuel Consumption (kg) 1.729 2.235
Peak Altitude (km) 304.569 304.658
Final Altitude (km) 299.859 300.047

Switching Time (hr) 10.552 13.638

Fig. 9. Time histories of altitude, mass, thrust, and longitudinal/latitudinal steering angles obtained using 
combined method; air drag only (left) and active J2 effect (right).
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is relatively weak. For the case considering J2 perturbation 

with drag, more fuel was used to maintain the altitude than 

for the case considering only drag; J2 perturbation has a 

remarkable effect on LEO spacecrafts, and should be taken 

into account for a more realistic mission design.

The overall hybrid process proposed in this paper can 

provide a robust, efficient, and precise fuel-optimal solution 

for various cases of satellite maneuvers.
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