DOI QR코드

DOI QR Code

저궤도 위성용 정밀궤도 계산모델 개발

Precision Orbit Propagator for Low Earth Orbiters

  • 김정래 (한국항공대학교 항공우주 및 기계공학부) ;
  • 노정호 (한국항공대학교 항공우주 및 기계공학부) ;
  • 기창돈 (서울대학교 기계항공공학부)
  • Kim, Jeong-Rae (School of Aerospace and Mechanical Engineering, Korea Aerospace University) ;
  • Noh, Jeong-Ho (School of Aerospace and Mechanical Engineering, Korea Aerospace University) ;
  • Kee, Chang-Don (School of Mechanical and Aerospace Engineering, Seoul National University)
  • 투고 : 2012.10.28
  • 심사 : 2012.12.30
  • 발행 : 2012.12.31

초록

저궤도 위성에 탑재하는 위성항법 수신기는 관측된 신호를 필터링하고 신호중단 시 궤도예측을 수행하는 항법필터를 장착하는데, 사용하는 위성동역학 모델이 필터성능을 주로 결정하게 된다. 본 연구에서는 항법필터에 필요한 정밀위성동역학 알고리듬을 연구하고 이를 계산하는 프로그램을 개발하였다. 정밀 중력가속도, 정밀좌표변환, 3체 중력, 대기저항, 태양복사압 모델을 결합하였으며, 해외 정밀궤도결정 프로그램을 이용하여 정확도를 검증하였다. 시뮬레이션과 실제 궤도 데이터를 사용하여 초기위치 정확도에 따른 궤도예측정확도를 분석 하였다. 개발된 모델은 위성탑재용 실시간 항법필터에 적용되는 동역학모델로는 충분한 정확도를 가지는 것을 확인하였다.

Low Earth orbit satellites with satellite navigation receiver use onboard navigation filters for filtering measurement signals and for orbit prediction under signal loss. Precision satellite dynamic models, core of the navigation filter, are studied and a computation program is developed. Gravity acceleration, precision coordinate transform, third-body gravity, atmospheric drag, and solar radiation pressure models are combined into an orbit prediction algorithm, and a proven precision orbit determination software is used to validate the program. Orbit prediction accuracy is analyzed with simulated and flight orbit data. The program meets an accuracy level for onboard real-time navigation filter.

키워드

참고문헌

  1. Mehelen, C., and Laurichesse, "Improving GPS Navigation with Orbital Filter", Proceedings 4th ESA International Conference on Spacecraft Guidance, Navigation and Control Systems, ESTEC, Noordwijk, The Netherlands, October 18-21, 1999.
  2. Berthias, J.-P, et al., "General characteristics of real-time onboard orbit determination", Proceedings of the 12th International Symposium, Darmstadt, Germany, June 2-6, 1997.
  3. UTOPIA description, University of Texas at Austin, Center for Space Research, 1980.
  4. Vallado, Fundamentals of astrodynamics and applications, 2nd ed., Microcosm, 2001.
  5. Montenbruck, O. and Gill, E., Satellite Orbits: Models, Methods and Applications, Springer, 2005
  6. Hofmann-Wellenhof, et al., Global Positioning System- Theory and Practice, 5th revised edition. Springer Wien New York, 2001.
  7. Kim, J. and Noh, J. H., "Precision Coordinate Transformation and Gravity Acceleration Algorithms", Journal of the Korean Society for Aeronautical Science and Flight operation, vol. 19, No. 4, 2011.12, pp.30- 36.
  8. Thomas, J. B., Private communications, 1999
  9. Kim, H. D, and Jung O.-C., "Development and Application of the Automated Precise Orbit Determination System", Aerospace Engineering and Technology, Vol. 10, No. 1, 2011.7, pp.167-174.
  10. Yoon, J. C., "Precision orbit determination of the low earth orbiting satellite using the GPS measurement", Yonsei University, Department of Astronomy, Ph.D. Thesis, 2002.08