• Title/Summary/Keyword: satellite account

Search Result 142, Processing Time 0.037 seconds

THE ATTITUDE STABILITY ANALYSIS OF A RIGID BODY WITH MULTI-ELASTIC APPENDAGES AND MULTI-LIQUID-FILLED CAVITIES USING THE CHETAEV METHOD

  • Kuang, Jin-Lu;Kim, Byung-Jin;Lee, Hyun-Woo;Sung, Dan-Keun
    • Journal of Astronomy and Space Sciences
    • /
    • v.15 no.1
    • /
    • pp.209-220
    • /
    • 1998
  • The stability problem of steady motion of a rigid body with multi-elastic appendages and multi-liquid-filled cavities, in the presence of no external forces or torque, is considered in this paper. The flexible appendages are modeled as the clamped -free-free-free rectangular plates, or/and as the discrete mass- spring sub-system. The motion of liquid in every single ellipsoidal cavity is modeled as the uniform vortex motion with a finite number of degrees of freedom. Assuming that stationary holonomic constraints imposed on the body allow its rotation about a spatially fixed axis, the equation of motion for such a systematic configuration can be very complex. It consists of a set of ordinary differential equations for the motion of the rigid body, the uniform rotation of the contained liquids, the motion of discrete elastic parts, and a set of partial differential equations for the elastic appendages supplemented by appropriate initial and boundary conditions. In addition, for such a hybrid system, under suitable assumptions, their equations of motion have four types of first integrals, i.e., energy and area, Helmholtz' constancy of liquid - vortexes, and the constant of the Poisson equation of motion. Chetaev's effective method for constructing Liapunov functions in the form of a set of first integrals of the equations of the perturbed motion is employed to investigate the sufficient stability conditions of steady motions of the complete system in the sense of Liapunov, i.e., with respect to the variables determining the motion of the solid body and to some quantities which define integrally the motion of flexible appendages. These sufficient conditions take into account the vortexes of the contained liquids, the vibration of the flexible components, and coupling among the liquid-elasticity solid.

  • PDF

ATMOSPHERIC CORRECTION TECHNIQUE FOR GEOSTATIONARY OCEAN COLOR IMAGER (GOCI) ON COMS

  • Shanmugam, Palanisamy;Ahn, Yu-Hwan
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.467-470
    • /
    • 2006
  • Geostationary Ocean Color Imager (GOCI) onboard its Communication Ocean and Meteorological Satellite (COMS) is scheduled for launch in 2008. GOCI includes the eight visible-to-near-infrared (NIR) bands, 0.5km pixel resolution, and a coverage region of 2500 ${\times}$ 2500km centered at 36N and 130E. GOCI has had the scope of its objectives broadened to understand the role of the oceans and ocean productivity in the climate system, biogeochemical variables, geological and biological response to physical dynamics and to detect and monitor toxic algal blooms of notable extension through observations of ocean color. To achieve these mission objectives, it is necessary to develop an atmospheric correction technique which is capable of delivering geophysical products, particularly for highly turbid coastal regions that are often dominated by strongly absorbing aerosols from the adjacent continental/desert areas. In this paper, we present a more realistic and cost-effective atmospheric correction method which takes into account the contribution of NIR radiances and include specialized models for strongly absorbing aerosols. This method was tested extensively on SeaWiFS ocean color imagery acquired over the Northwest Pacific waters. While the standard SeaWiFS atmospheric correction algorithm showed a pronounced overcorrection in the violet/blue or a complete failure in the presence of strongly absorbing aerosols (Asian dust or Yellow dust) over these regions, the new method was able to retrieve the water-leaving radiance and chlorophyll concentrations that were consistent with the in-situ observations. Such comparison demonstrated the efficiency of the new method in terms of removing the effects of highly absorbing aerosols and improving the accuracy of water-leaving radiance and chlorophyll retrievals with SeaWiFS imagery.

  • PDF

Accuracy Analysis of Code-based PPP-RTK Positioning Utilizing K-SSR Correction Messages Outside the Reference Network

  • Yoon, Woong-Jun;Park, Kwan-Dong;Kim, Hye-In;Woo., Seung;Park, Junpyo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.6 no.2
    • /
    • pp.79-86
    • /
    • 2017
  • Precise Point Positioning-Real Time Kinematic (PPP-RTK) refers to a technology that combines PPP with network-RTK in which a user does not directly receive observed data from a reference station but receives State-Space Representation (SSR) messages corrected for error components from a central processing station through Networked Transport of RTCM via Internet Protocol (NTRIP) or Digital Multimedia Broadcasting (DMB) for purposes of positioning. SSR messages, which refer to corrections used in PPP-RTK, are generated by a central processing station using real-time observed data collected from reference stations and account for corrections needed due to the ionosphere, troposphere, satellite orbital errors, satellite time offsets, and satellite biases. This study used a type of SSR message provided in South Korea, known as Korea-SSR (K-SSR), to implement a PPP-RTK algorithm based on code-pseudorange measurements and validated its accuracy within the reference station network. In order to validate the accuracy of the implemented algorithm outside of the network, the K-SSR was extrapolated and applied to positioning in reference stations in Changchun, China (CHAN) and Japan (AIRA). This also entailed a quantitative evaluation that measured improvements in accuracy in comparison with point positioning. The results of the study showed that positioning applied with extrapolated K-SSR correction data was more accurate in both AIRA and CHAN than point positioning with improvements of approximately 20~50%.

Development and Field Test of the NEXTSat-2 Synthetic Aperture Radar (SAR) Antenna Onboard Vehicle (차세대소형위성 2호 영상 레이다 안테나 개발 및 차량 탑재 시험)

  • Shin, Goo-Hwan;Lee, Jung-Su;Jang, Tae Seong;Kim, Dong-Guk;Jung, Young-Bae
    • Journal of Space Technology and Applications
    • /
    • v.1 no.1
    • /
    • pp.33-40
    • /
    • 2021
  • Based on the requirements of a total weight of 42 kg or less, the NEXTSat-2 SAR (synthetic aperture radar) system was developed. As the NEXTSat-2 is a small-sized satellite, the SAR system was designed to account for about 40% of the dry mass of the payload relative to the total mass. Among the major components of the SAR system - which are an antenna, an RF transceiver, a baseband signal processor, and a power unit - a part with a particularly large dry mass is the antenna, the core of the SAR system. Whereas various selections are possible in consideration of gain and efficiency when designing the antenna, the micro-strip patch array antenna was adopted by reflecting the dry mass, power, and resolution required by the NEXTSat-2 project. In order to meet the mission requirement of the NEXTSat-2, the antenna was developed with a frequency of 9.65 GHz, a gain of 42.7 dBi, and a return loss of -15 dB. The performance of the antenna was verified by conducting a field test onboard the vehicle.

Cooperative Control of a Spaceshuttle / Manipulator System (우주선에 설치된 로보트 협동 제어에 관한 연구)

  • Jang Myoung Lee
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.1
    • /
    • pp.41-48
    • /
    • 1994
  • The conventional resolved motion control is not applicable for the control of robots on the spacecraft on account of the floating base of the robots. When the robots perform the assembly or repair operations, the position and attitude of the base satellite are disturbed by the reaction force/moment caused by the robot motion. This reaction will cause error on the robot. motion. Therefore, we define a new type of Jacobian(Extended Jacobian) to minimize the effects of reaction on the accuracy of the robot performing assembly or repair operations. In this paper, we utilize the redundancy of the closed chain system to minimize the effects of the robot motion on the position and attitude of spacecraft. This will results in the accurate assembly and repair operations by the robot.

  • PDF

Comparison of Environmental Economic Performance In South Korea and Germany

  • Choi, Jung-Su;Schoer, Karl;Schweinert, Stefan
    • Journal of Environmental Policy
    • /
    • v.2 no.2
    • /
    • pp.81-103
    • /
    • 2003
  • This paper compares the environmental economic performance of the South Korean and the German economy during the last decade. The analysis is based on comparable data from the Environmental Economic Accounts (EEA). The EEA is a satellite account to the National Accounts which enhances the conventional economic accounts by a description of the interactions between the economy and the environment. The data from the EEA and the national accounts are fully compatible. In absolute terms the environmental pressures caused by economic activities were with regards to the environmental factors used for the analysis generally lower in South Korea than in Germany. If the use of environmental factors is related to each country's gross domestic product (environmental productivities) a lower level of environmental productivity can be observed for most of the environmental factors in South Korea compared to Germany. For example in 1999 energy and $CO_2$ productivity were about two fifths of the German level. This corresponds to the relation regarding labour productivity (Gross domestic product per employment).

  • PDF

A study of monitoring and reconfiguration electronics design in space computer unit (위성컴퓨터의 감시 및 재구성 회로 설계에 관한 연구)

  • Cho, Young-Ho;Won, Joo-Ho;Choi, Jae-Dong;Yang, Koon-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1958_1959
    • /
    • 2009
  • This paper describes an MRE(Monitoring and Reconfiguration Electronics) which is in charge of SCU(Spacecraft Computer Unit) hardware failure monitoring as well as of protecting the satellite against system failures. To achieve it, MRE is designed that it is an independent function with respect to the rest of the SCU, that is, care is taken into account in order to minimize the interface(the failure propagation) between the MRE and the other SCU functions.

  • PDF

Redefinition Procedures of the Korean Geodetic System (한국측지좌표계의 재정립에 대한 연구)

  • 이영진;조규전;김원익
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.14 no.2
    • /
    • pp.141-150
    • /
    • 1996
  • A satellite positioning system has been recently introduced in Korea and the applications of the system are in-creasing gradually, and it is, therefore, interested in the geocentric coordinate system. In this paper, the requirements of the redefinition of the Korean geodetic system which is suited to the geocentric datum and the strategies for the establishment of new geodetic networks are considered. It is also taken into account to maintain the control points, in the transition from the old coordinate systems to a new coordinate system.

  • PDF

COMS THRUSTER SET SELECTION FOR WHEEL OFFLOADING

  • Park, Bong-Kyu;Yang, Koon-Ho;Lee, Sang-Cherl;Park, Young-Woong
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.191-195
    • /
    • 2006
  • This paper discusses wheel offloading approaches of COMS which has a single side solar array system for the accommodation of the optical payloads. First of all, in an effort to reduce fuel consumption and reflect practical implementation point of view, thruster sets for wheel offloading are proposed based on numerical analyses taking into account the COMS configuration. In this analysis, it is assumed that the wheel offloading is conducted twice a day. Secondly, in order to evaluate the effectiveness of the proposed thruster sets, orbit simulations have been conducted for several wheel offloading approaches and compared.

  • PDF

SHORT-TERM CALIBRATION OF MTSAT-1R SOLAR CHANNEL USING DESERT TARGETS

  • Chun, Hyoung-Wook;Sohn, Byung-Ju
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.426-429
    • /
    • 2008
  • In this study, we propose the calibration algorithm for the solar channel (550 ${\sim}$ 900 nm) of MTSAT 1R which is the Japanese geostationary satellite launched on 26 Feb. 2005 and located at $140^{\circ}E$. We developed a method utilizing MODIS-derived BRDFs for the solar channel calibration over the bright desert area. Targets are selected based on the desert's brightness, spatial uniformity, temporal stability and spectral stability. The 6S model has been incorporated to account for directional effects of the surface using MODIS-derived BRDF parameters within the spectral interval in interest. Results based on the analysis for the period from November 2007 to June 2008 suggest that MTSAT-1R solar channel measurements have a low bias within 5%.

  • PDF