• Title/Summary/Keyword: sapphire glass

Search Result 52, Processing Time 0.026 seconds

Micro-machining inside of a transparent glass (투명유리 내부의 컬러 미세형상 가공)

  • Kim Y.M.;Yoo B.H.;Cho S.H.;Chng W.S.;Kim J.G.;Whang K.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.209-210
    • /
    • 2006
  • We have successfully termed brown colored patterns inside of a transparent borosilicate glass generally known as BK7, laying the focus of near infrared Ti: sapphire femtosecond laser beam in the bulk BK7 glass. It is important to keep the laser power well below the damage threshold of BK7 in forming the color center. Thanks to the low laser power, there was no laser induced mechanical damage such as cracks or threads in the color formed area. From the absorbance spectrum and its gaussian fitting, we found the band gap of BK7, 4.21eV, and three absorption edges.

  • PDF

Study on crystallization of $PbTiO_3$ thin films by the Sol-Gel method (Sol-Gel법을 이용한 $PbTiO_3$ 박막의 결정화에 관한 연구)

  • Kyu Seog Hwang;Byung Wan Yoo;Byung Hoon Kim
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.4 no.2
    • /
    • pp.199-209
    • /
    • 1994
  • $PbTiO_3$ thin films were prepared on soda-lime-silica slide glasses, Si-wafer and sapphire substrate by the dip-coating of precursor solution. As starting materials, titanium tetra iso-propoxide and lead acetate trihydrate were used. Then acetylacetone was added to prepare stable sol. The effect of the parameters such as viscosity and composition of sol were investigated. The optical transmittance at visible range, refractive index, IR spectra were measured in varying compositions, thickness and heat treatment temperature. The crystallization of $PbTiO_3$ films were measured by using XRD and SEM. Diffusion of compositions from slide glass to thin film were investigated by using EDX, too. These sols not precipitated for 20 days. Transmittance of $PbTiO_3$ films at visible range were decreased with the increase of thickness and heat treatment temperatures, and were exhibited flat spectra. Pyrochlore type appeared in the films on slide glass and perovskite type appeared in the films on Si-wafer or sapphire at $600^{\circ}C$. Perovskite crystals transformed to $PbTi_3O_7$ phase at $800^{\circ}C$.

  • PDF

Photoinduced Singlemode Waveguide in Optical Fluoride Glasses Using Plasma Filaments

  • Cho, Sung-Hak
    • Journal of the Optical Society of Korea
    • /
    • v.7 no.3
    • /
    • pp.156-159
    • /
    • 2003
  • Permanent structure of photoinduced singlemode waveguide in optical fluoride glasses was demonstrated using the self-channeled plasma filament excited by a femtosecond (110 fs) Ti:sapphire laser ($λ_p$ = 800 nm). The photoinduced refractive index modification in ZBLAN glasses reached a length of approximately 10 - 15 mm from the input surface of the optical glass with the diameters ranging from 5 to 8 ${\mu}{\textrm}{m}$ at input intensities more than l.0 ${\times}$ $10^{12}$ W/$\textrm{cm}^2$. The graded refractive index profiles were fabricated to be a symmetric form from the center of an optical fluoride glass and a maximum value of refractive index change (ㅿn) was measured to be l.3${\times}$$10^{-2}$. The beam profile of the output beam transmitted through the modified region showed that the photoinduced refractive index modification produced a permanent structure of singlemode waveguide.

Optical diffraction gratings embedded in BK-7 glasses by tightly focused femtosecond laser

  • Yoon, Ji Wook;Choi, Won Suk;Kim, Hoon Young;Cho, Sung-Hak
    • Laser Solutions
    • /
    • v.17 no.2
    • /
    • pp.19-25
    • /
    • 2014
  • Optical embedded diffraction gratings with the bulk modification in BK-7 glass plates excited by tightly focused high-intensity femtosecond (130fs) Ti: sapphire laser (peak wavelength = 790nm) were demonstrated. The structural modifications with diameters ranging from 400nm to $4{\mu}m$ were photo-induced after plasma formation occurred upon irradiation with peak intensities of more than $1{\times}1013W/cm^2$. The graded refractive index profile was fabricated to be a symmetric around from the center of the point at which low-density plasma occurred. The maximum refractive index change was estimated to be $1.5{\times}10^{-2}$. The two optical embedded gratings in BK-7 glass plate were demonstrated with refractive index modification induced by the scanning of low-density plasma formation.

  • PDF

Direct write patterning of ITO film by Femtosecond laser ablations

  • Farson, Dave;Choi, Hae-Woon;Kim, Kwang-Ryul;Hong, Soon-Kug
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.583-588
    • /
    • 2005
  • Indium tin oxide (ITO) is a commonly used conducting transparent oxide film (CTO) used in flat panel display applications. Direct write laser ablation is sometimes employed for ITO patterning and it is important that the substrate material and remaining ITO be affected as little as possible by the laser ablation. In this investigation, femtosecond laser ablation of ITO was studied to identify laser processing parameters which cleanly ablated ITO with a minimum of damage to a glass substrate and surrounding ITO. The Ti:Sapphire chirp pulse amplified femtosecond laser used for the experiments had a wavelength of 775nm and produced pulses with a duration of 150fs at a rate of 2 kHz. Ablation was carried out at a sufficiently high panel scanning speed that single ablation spots could be studied. The pulse energy was adjusted to determine feasible spot diameters and depths which could be ablated into the ITO without damaging the glass substrate. Next, ablation of lines without glass damage was also demonstrated. Experiments were also performed with a high repetition rate (100kHz) femtosecond laser.

  • PDF

Color modification inside a transparent glass(BK7) using a femtosecond laser (펨토초 레이저 기반 투명유리(BK7) 내부의 컬러 미세형상 가공)

  • Kim, Hoon-Young;Yoon, Ji-Wook;Choi, Won-Seok;Park, Jung-Kyu;Choi, Ji-Yeon;Kim, Jae-Goo;Whang, Kyoung-Hyun;Cho, Sung-Hak
    • Laser Solutions
    • /
    • v.15 no.3
    • /
    • pp.16-19
    • /
    • 2012
  • We have successfully formed brown colored patterns inside of a transparent borosilicate glass generally known as BK7, laying the focus of near infrared Ti: sapphire femtosecond laser beam in the bulk BK7 glass. It is important to keep the laser power well below the damage threshold of BK7 in forming the color center. According to the low laser power, there was no laser induced mechanical damage such as cracks or threads in the color formed area. From the absorbance spectrum and its gaussian fitting, we found the band gap of BK7, 4.21eV, and three absorption edges.

  • PDF

A Study on Design Improvement by Vibration Analysis of Hardened Glass & Sapphire Machining Equipment for Smart IT Parts Industry (스마트 기기용 강화유리&사파이어 유리 전용 가공기의 진동해석을 통한 설계 개선에 관한 연구)

  • Cho, Jun-Hyun;Park, Sang-Hyun;An, Beom-Sang;Lee, Jong-Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.2
    • /
    • pp.51-56
    • /
    • 2016
  • High brittleness is a characteristic of glass, and in many cases it is broken during the process of machining due to processing problems, such as scratches, chipping, and notches. Machining defects occur due to the vibration of the equipment. Therefore, design techniques are needed that can control the vibration generated in the equipment to increase the strength of tempered glass. The natural frequency of the machine tool via vibration analysis (computer simulation) must be accurately understood to improve the design to ensure the stability of the machine. To accurately understand the natural frequency, 3D modeling, which is the same as actual apparatus, was used and a constraint condition was also applied that was the same as that of the actual apparatus. The maximum speeds of ultrasonic and high frequency, which are 15,000 rpm and 60,000 rpm, respectively, are considerably faster than those of typical machine tools. Therefore, an improved design is needed so that the natural frequency is formed at a lower region and the natural frequency does not increase through general design reinforcement. By restructuring the top frame of the glass processing, the natural frequency was not formed in the operating speed area with the improved design. The lower-order natural frequency is dominant for the effects that the natural frequency has on the vibration. Therefore, the design improvement in which the lower-order natural frequency is not formed in the operating speed area is an optimum design improvement. It is possible to effectively control the vibrations by avoiding resonance with simple design improvements.

CF4/O2/Ar Plasma Resistance of Al2O3 Free Multi-components Glasses (Al2O3 Free 다성분계 유리의 CF4/O2/Ar 내플라즈마 특성)

  • Min, Kyung Won;Choi, Jae Ho;Jung, YoonSung;Im, Won Bin;Kim, Hyeong-Jun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.3
    • /
    • pp.57-62
    • /
    • 2022
  • The plasma resistance of multi-component glasses containing La, Gd, Ti, Zn, Y, Zr, Nb, and Ta was analyzed in this study. The plasma etching was performed via inductively coupled plasma-reactive ion etching (ICP-RIE) using CF4/O2/Ar mixed gas. After the reaction, the glass with a low fluoride sublimation temperature and high content of P, Si, and Ti elements showed a high etching rate. On the other hand, the glass containing a high fluoride sublimation temperature component such as Ca, La, Gd, Y, and Zr exhibited high plasma resistance because the etch rate was lower than that of sapphire. Glass with low plasma resistance increased surface roughness after etching or nanoholes were formed on the surface, but glass with high plasma resistance showed little change in surface microstructure. Thus, the results of this study demonstrate the potential for the development of plasma-resistant glasses (PRGs) with other compositions besides alumino-silicate glasses, which are conventionally referred to as plasma-resistant glasses.

Polarization Precession Effects for Shear Elastic Waves in Rotated Solids

  • Sarapuloff, Sergii A.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.842-848
    • /
    • 2013
  • Developments of Solid-State Gyroscopy during last decades are impressive and were based on thin-walled shell resonators like HRG or CRG made from fused quartz or leuko-sapphire. However, a number of design choices for inertial-grade gyroscopes, which can be used for high-g applications and for mass- or middle-scale production, is still very limited. So, considerations of fundamental physical effects in solids that can be used for development of a miniature, completely solid-state, and lower-cost sensor look urgent. There is a variety of different types of bulk acoustic (elastic) waves (BAW) in anisotropic solids. Shear waves with different variants of their polarization have to be studied especially carefully, because shear sounds in glasses and crystals are sensitive to a turn of the solid as a whole, and, so, they can be used for development of gyroscopic sensors. For an isotropic medium (for a glass or a fine polycrystalline body), classic Lame's theorem (so-called, a general solution of Elasticity Theory or Green-Lame's representation) has been modified for enough general case: an elastic medium rotated about an arbitrary set of axes. Travelling, standing, and mixed shear waves propagating in an infinite isotopic medium (or between a pair of parallel reflecting surfaces) have been considered too. An analogy with classic Foucault's pendulum has been underlined for the effect of a turn of a polarizational plane (i.e., an integration effect for an input angular rate) due to a medium's turn about the axis of the wave propagation. These cases demonstrate a whole-angle regime of gyroscopic operation. Single-crystals are anisotropic media, and, therefore, to reflect influence of the crystal's rotation, classic Christoffel-Green's tensors have been modified. Cases of acoustic axes corresponding to equal velocities for a pair of the pure-transverse (shear) waves have of an evident applied interest. For such a special direction in a crystal, different polarizations of waves are possible, and the gyroscopic effect of "polarizational precession" can be observed like for a glass. Naturally, formation of a wave pattern in a massive elastic body is much more complex due to reflections from its boundaries. Some of these complexities can be eliminated. However, a non-homogeneity has a fundamental nature for any amorphous medium due to its thermodynamically-unstable micro-structure, having fluctuations of the rapidly-frozen liquid. For single-crystalline structures, blockness (walls of dislocations) plays a similar role. Physical nature and kinematic particularities of several typical "drifts" in polarizational BAW gyros (P-BAW) have been considered briefly too. They include irregular precessions ("polarizational beats") due to: non-homogeneity of mass density and elastic moduli, dissymmetry of intrinsic losses, and an angular mismatch between propagation and acoustic axes.

  • PDF

Characteristics of ITZO Thin Films According to Substrate Types for Thin Film Solar Cells (박막형 태양전지 응용을 위한 ITZO 박막의 기판 종류에 따른 특성 분석)

  • Joung, Yang-Hee;Kang, Seong-Jun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.6
    • /
    • pp.1095-1100
    • /
    • 2021
  • In this study, ITZO thin films were deposited on glass, sapphire, and PEN substrates by RF magnetron sputtering, and their electrical and optical properties were investigated. The resistivity of the ITZO thin film deposited on the glass and sapphire substrates was 3.08×10-4 and 3.21×10-4 Ω-cm, respectively, showing no significant difference, whereas the resistivity of the ITZO thin film deposited on the PEN substrate was 7.36×10-4 Ω-cm, which was a rather large value. Regardless of the type of substrate, there was no significant difference in the average transmittance of the ITZO thin film. Figure of Merits of the ITZO thin film deposited on the glass substrate obtained using the average transmittance in the absorption region of the amorphous silicon thin film solar cell and the absorption region of the P3HT : PCBM organic active layer were 10.52 and 9.28×10-3 Ω-1, respectively, which showed the best values. Through XRD and AFM measurements, it was confirmed that all ITZO thin films exhibited an amorphous structure and had no defects such as pinholes or cracks, regardless of the substrate type.