DOI QR코드

DOI QR Code

Photoinduced Singlemode Waveguide in Optical Fluoride Glasses Using Plasma Filaments

  • Cho, Sung-Hak (Laser Technology Laboratory, RIKEN (The Institute of Physical and Chemical Research))
  • Received : 2003.06.25
  • Published : 2003.09.01

Abstract

Permanent structure of photoinduced singlemode waveguide in optical fluoride glasses was demonstrated using the self-channeled plasma filament excited by a femtosecond (110 fs) Ti:sapphire laser ($λ_p$ = 800 nm). The photoinduced refractive index modification in ZBLAN glasses reached a length of approximately 10 - 15 mm from the input surface of the optical glass with the diameters ranging from 5 to 8 ${\mu}{\textrm}{m}$ at input intensities more than l.0 ${\times}$ $10^{12}$ W/$\textrm{cm}^2$. The graded refractive index profiles were fabricated to be a symmetric form from the center of an optical fluoride glass and a maximum value of refractive index change (ㅿn) was measured to be l.3${\times}$$10^{-2}$. The beam profile of the output beam transmitted through the modified region showed that the photoinduced refractive index modification produced a permanent structure of singlemode waveguide.

Keywords

References

  1. B. Bendow, Fluoride Glass Fiber Optics (Academic Press, San Diego, USA, 1991).
  2. M. Doshida, K. Teraguchi, and M. Obara, “Gain measurement and upconversion analysis in $Tm^{3+}$, $Ho^{3+}$ co-doped alumino-zirco-fluoride glass,” IEEE J. Quantum Electron., vol. 31, pp. 910-915, 1995. https://doi.org/10.1109/3.375937
  3. S. Ferber, V. Gaebler, and H-J. Eichler, “Violet and blue upconversion-emission from erbium-doped ZBLAN-fibers with red diode laser pumping,” Opt. Materials, vol. 20, pp. 211-215, 2002. https://doi.org/10.1016/S0925-3467(02)00064-2
  4. S. Mitachi and T. Miyashita, “Fluoride-glass-cladded optical fibres for mid-infra-red ray transmission,” Electron. Lett., vol. 17, pp. 591-598, 1981. https://doi.org/10.1049/el:19810416
  5. D. C. Tran, C. F. Fisher, and G. H. Siegel, “Fluoride glass preforms prepared by a rotational casting process,” Electron. Lett., vol. 18, pp. 657-658, 1982. https://doi.org/10.1049/el:19820448
  6. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett., vol. 21, pp. 1729-1731, 1996. https://doi.org/10.1364/OL.21.001729
  7. E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T. -H. Her, J. P. Callan, and E. Mazur, “Threedimensional optical storage inside transparent materials,” Opt. Lett., vol. 21, pp. 2023-2025, 1996. https://doi.org/10.1364/OL.21.002023
  8. D. Homoelle, W. Wielandy, A. L. Gaeta, E. F. Borrelli, and C. Smith, “Infrared photosensitivity in silica glasses exposed to femtosecond laser pulses,” Opt. Lett., vol. 24, pp. 1311-1313, 1999. https://doi.org/10.1364/OL.24.001311
  9. C. B. Schaffer, A. Brodeur, J. F. Garcia, and E. Mazur, “Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy,” Opt. Lett., vol. 26, pp. 93-95, 2001. https://doi.org/10.1364/OL.26.000093
  10. K. Minoshima, A. M. Kowalevicz, E. P. Ippen, and J. G. Fujimoto, “Fabrication of coupled mode photonic devices in glass by nonlinear femtosecond laser materials processing,” Opt. Express, vol. 10, pp. 645-652, 2002. https://doi.org/10.1364/OE.10.000645
  11. M. Li, M. Ishizuka, X. Liu, Y. Sugimoto, N. Ikeda, and K. Asakawa, “Nanostructuring in submicron-level waveguides with femtosecond laser pulses,” Opt. Commun., vol. 212, pp. 159-163, 2002. https://doi.org/10.1016/S0030-4018(02)01956-9
  12. A. M. Streltsov and N. F. Borrelli “Study of femtosecond -laser-written waveguides in glasses,” Opt. Soc. Am. B, vol. 19, pp. 2496-2504, 2002. https://doi.org/10.1364/JOSAB.19.002496
  13. K. Miura, J. Qiu, H. Inoue, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett., vol. 71, pp. 3329-3331, 1997. https://doi.org/10.1063/1.120327
  14. H. Ammann, W. Hodel, and H.PWeber, “Experimental and numerical investigation of short pulse propagation and amplification around 1.3 μm in a Nd3+-doped fluoride fiber,” Opt. Comm., vol. 113, pp. 39-45, 1994. https://doi.org/10.1016/0030-4018(94)90589-4
  15. N. Bloembergen, “Laser-induced electric breakdown in solids,” IEEE J. Quantum Electron., vol. 10, pp. 375-386, 1974. https://doi.org/10.1109/JQE.1974.1068132
  16. S. H. Cho, H. Kumagai, I. Yokota, K. Midorikawa, and M. Obara, “Observation of self-channeled plasma formation and bulk modification in optical fibers using high-intensity femtosecond laser,” Jpn. J. Appl. Phys., vol. 37, pp. L737-L739, 1998. https://doi.org/10.1143/JJAP.37.L737
  17. O. M. Efimov, K. Gabel, S. V. Garnov, L. B. Glebov, S. Grantham, M. Richardson, and M. J. Soileau, “Color-center generation in silicate glasses exposed to infrared femtosecond pulses,” J. Opt. Soc. Am. B, vol. 15, pp. 193- 199, 1998. https://doi.org/10.1364/JOSAB.15.000193
  18. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Optical ablation by high-power short-pulse lasers,” J. Opt. Soc. Am., vol. 13, pp. 459-468, 1996. https://doi.org/10.1364/JOSAB.13.000459