• Title/Summary/Keyword: saponarin

Search Result 10, Processing Time 0.032 seconds

Saponarin content and biosynthesis-related gene expression in young barley (Hordeum vulgare L.) seedlings

  • Lee, HanGyeol;Woo, So-Yeun;Ra, Ji-Eun;Lee, Kwang-Sik;Seo, Woo Duck;Lee, Jeong Hwan
    • Journal of Plant Biotechnology
    • /
    • v.46 no.4
    • /
    • pp.247-254
    • /
    • 2019
  • Flavonoids are widely distributed secondary metabolites in plants that have a variety biological functions, as well as beneficial biological and pharmacological activities. In barley (Hordeum vulgare L.), for example, high levels of saponarin accumulate during primary leaf development. However, the effect of saponarin biosynthetic pathway genes on the accumulation of saponarin in barley is poorly understood. Accordingly, the aim of the present study was to examine the saponarin contents and expression levels of saponarin biosynthetic pathway genes [chalcone synthase (CHS), chalcone isomerase (CHI), and UDP-Glc:isovitexin 7-O-glucosyltransferase (OGT)] during early seedling developmental and under several abiotic stress conditions. Interestingly, the upregulation of HvCHS, HvCHI, and HvOGT during early development was associated with saponarin accumulation during later stages. In addition, exposure to abiotic stress conditions (e.g., light/dark transition, drought, and low or high temperature) significantly affected the expression of HvCHS and HvCHI but failed to affect either HvOGT expression or saponarin accumulation. These findings suggested that the expression of HvOGT, which encodes an enzyme that catalyzes the final step of saponarin biosynthesis, is required for saponarin accumulation. Taken together, the results of the present study provide a basis for metabolic engineering in barley plants, especially in regards to enhancing the contents of useful secondary metabolites, such as saponarin.

Optimization of the extraction procedure for quantitative analysis of saponarin and the artificial light condition for saponarin production from barley sprout (고함량 사포나린 함유 보리 어린 순 재배를 위한 식물공장내 인공광 조건 및 사포나린 추출 분석법 최적화)

  • Oh, Kyeong-Yeol;Song, Yeong Hun;Lee, Duek-Yeong;Lee, Tae-Geun;Kim, Jin-Hyo
    • Journal of Applied Biological Chemistry
    • /
    • v.64 no.3
    • /
    • pp.197-203
    • /
    • 2021
  • Saponarin is a crucial component of barley sprout, and the production and quantitative analysis are issued to date. In this study, the optimal saponarin extraction conditions were presented on the subject of acetonitrile, ethanol, methanol, and water for the quantitative analysis in barley sprout through the extraction efficiency compared with the solvent concentration and extraction time using the reaction surface methodology. The optimal extraction time and solvent condition for saponarin were 3.9 h and 53.7% of aqueous methanol, respectively. In addition, the effect of LED artificial light on the saponarin production in barley sprouts was evaluated by the light cycle, light quantity, and light quality. The optimal cultivation conditions under artificial light for the growth of barley sprout and saponarin production were most effectively achieved on 220-320 μmol m-2 s-1 of the light quantity with 8 h day-1 of a daylight cycle under 6500K LED combined with red light. Furthermore, blue light was evaluated as the main factor in the biosynthesis of saponarin.

Correlation of saponarin content with biosynthesis-related gene expression in hulled and hulless barley (Hordeum vulgare L.) cultivars

  • Lee, HanGyeol;Park, Jae-Hyeok;Yoon, A Mi;Kim, Young-Cheon;Park, Chul Soo;Yang, Ji Yeong;Woo, So-Yeun;Seo, Woo Duck;Lee, Jeong Hwan
    • Journal of Plant Biotechnology
    • /
    • v.48 no.1
    • /
    • pp.12-17
    • /
    • 2021
  • Saponarin found in young barley sprouts has a variety of beneficial biological and pharmacological properties, including antioxidant, hypoglycemic, antimicrobial, and hepatoprotective activities. Our previous work demonstrated that saponarin content was correlated with the expression levels of three biosynthetic pathway genes [chalcone synthase (HvCHS1), chalcone isomerase (HvCHI), and UDP-Glc:isovitexin 7-O-glucosyltransferase (HvOGT1)] in young barley seedlings under various abiotic stress conditions. In this study, we investigated the saponarin content and expression levels of three saponarin biosynthetic pathway genes in hulled and hulless domestic barley cultivars. In the early developmental stages, some hulled barley cultivars (Kunalbori1 and Heukdahyang) had much higher saponarin contents than did the hulless barley cultivars. An RNA expression analysis showed that in most barley cultivars, decreased saponarin content correlated with reduced expression of HvCHS1 and HvCHI, but not HvOGT1. Heat map analysis revealed both specific increases in HvCHS1 expression in certain hulled and hulless barley cultivars, as well as general changes that occurred during the different developmental stages of each barley cultivar. In summary, our results provide a molecular genetic basis for the metabolic engineering of barley plants to enhance their saponarin content.

Varietal Difference and Determination of Saponarin content in Barley leaf (보리잎 Saponarin 성분의 정량분석 및 품종간 차이)

  • Ryu Su Noh;Ku Bon Il;Bae Kyong Hwa;Lee Eun Jung;Han Sang Jun;Kang Myong Hwa
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2001.05a
    • /
    • pp.82-83
    • /
    • 2001
  • [ $\circ$ ] HPLC상에서 saponarin의 retention time은 12.37분이었고, 표준물질에 의한 검량식은 Y=0.0513X-4.6182($R^2$=0.9982)이었다. $\circ$ 생육단계에 따라 saponarin 함량의 차이를 보여서 본엽 4매일 때 100g의 잎에는 강보리 447mg, 부강 437mg, 남향보리 395mg, 사천6호 370 mg, 탑골보리 219mg 순이었다. $\circ$ Saponarin 함량이 높은 품종의 잎에서 항산화능력이 높은 것으로 나타났다.

  • PDF

Influence of Drought Stress Treatment on Saponarin Content during the Growing Period of Barley Sprouts (새싹보리 재배기간 중 수분스트레스 처리가 사포나린 함량에 미치는 영향)

  • Yoon, Young-Eun;Kim, Song Yoeb;Choe, Hyeonji;Cho, Ju Young;Seo, Woo Duck;Kim, Young-Nam;Lee, Yong Bok
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.4
    • /
    • pp.290-294
    • /
    • 2021
  • BACKGROUND: Barley sprouts contain a large number of secondary metabolites such as polyphenols, saponarin, and policosanols. The synthesis of such secondary metabolites occurs as a defense mechanism against external environmental stresses. In particular, it has been widely known that drought stress (DS) increases the content of flavonoids in plants. The objective of this study was to investigate the effects of drought stress treatment on the saponarin content in barley sprouts during the growing period. METHODS AND RESULTS: In this study, changes in saponarin content with different DS exposure periods and times were evaluated under the hydroponic system. For establishing different DS treatment periods, water supply was stopped for 1, 2, and 3 days, once leaf length was at 10 cm. To control different DS treatment times, water supply was stopped for 2 days, once leaf lengths were 5, 10, and 15 cm. As a result, the water potential of barley sprouts decreased from -0.8 MPa (before DS treatment) to -1.2, -2.4, and -3.2 MPa (after DS treatment), and reversely recovered to -0.8 MPa after re-irrigation. When 10 cm leaves were subjected to DS for 1 and 2 days, the saponarin content increased by 12 and 10%, respectively, while it increased by 19% when DS was applied to the 5 cm leaves. CONCLUSION(S): The results of this study suggest that drought stress at the early stage of growth (5 cm) is most helpful to increase the saponarin content of barley sprouts.

Studies on the flavonoids of the Hibiscus syriacus L. Complex (무궁화 품종내의 flavonoid 성분분포에 관한연구)

  • 유기역
    • Korean Journal of Plant Resources
    • /
    • v.9 no.3
    • /
    • pp.224-229
    • /
    • 1996
  • Floral flavonoids of Hibiscus syriacus L. six complex with 68 formac all in all were examined. Thirteen flavonoids appeared on the two dimensional chromatogtams. Spot 5, however, occupied more than 50% in total flavonoid contents, and other spots were invariably minor pigments in all samples examined. Ten spots among 13 spots showed the characteristics of flavones, having color of purple to dark purple under UV light and yellow under ammonia gas, while spots reagents suggests that 10 purple spots are 4', 5-OH aglycone type. Four spots out of 10 purple spots were possible to be identified: spot 5, saponarin, spot 7, vitexin, spot 9, xylovitexin, and spot 11, rhamnosylvitexin, respectively. It was suggested that spot 13 might be apigenin-7-O-diglycoside.

  • PDF

Comparison of the contents of total polyphenol, total flavonoid, and flavonoid derivatives in unfermented and fermented barley sprouts

  • Neil Patrick Uy;Hak-Dong Lee;Dae Cheol Byun;Sanghyun Lee
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.353-358
    • /
    • 2023
  • Barley (Hordeum vulgare) belongs to the Poaceae family. This study compared the polyphenol and flavonoid levels of unfermented and fermented barley sprouts using spectrophotometric assays. The findings indicated that fermentation greatly boosted the flavonoid content but caused only a slight increase in the polyphenol content. However, this does not imply that fermentation has no effects whatsoever on the polyphenol content of barley sprouts. This was due to the fact that some flavonoids cannot be detected by the wavelength used to calculate the overall polyphenol concentration. Both samples were subjected to high-performance liquid chromatography analysis and detected the flavonoids lutonarin, saponarin, isoorientin, isovitexin, and tricin-all of which have bioactive properties-most notably known for their antioxidant activity. These results augment the ongoing phytochemical profiling research and can possibly valorize the already thriving barley industry.

Effect of Nutrition Permeability from Barley sprouts, Curcuma longa L., Dendropanax morbifera LEV., Phellinus linteus Using Cryogenic Grinding Technology (동결분쇄를 이용한 보리싹, 울금, 황칠, 상황버섯의 영양성분 증진 및 투과 효과)

  • Lee, Il-nam;Han, Ye-eun;Jeong, Ho-jun;Park, Haeun;Jung, Juyeong;Rhee, Jin-Kyu
    • Food Engineering Progress
    • /
    • v.21 no.4
    • /
    • pp.391-402
    • /
    • 2017
  • The purpose of this study was to improve the nutrition and the permeability of functional plants by using cryogenic grinding technology. Barley sprouts, Curcuma longa L., Dendropanax morbifera LEV., Phellinus linteus were dried, ground and extracted in different temperature conditions. Powder size of barley sprouts and Curcuma longa L. were about $50{\mu}m$ and Dendropanax morbifera LEV. and Phellinus linteus were about $20{\mu}m$. Cryogenic ground of Barley sprouts preserved 18.27-124.65% of nutrients such as protein, ash, carbohydrate, beta carotene, minerals, vitamins. Cryogenic grinding powder of Curcuma longa L. show high nutrients retention rate of lipid and carbohydrate. Permeability was measured by Parallel Artificial Membrane Permeability Assay (PAMPA) to predict passive gastrointestinal absorption. Permeability of saponarin, which is marker compound of Barley sprouts, is 9.88 times higher in cryogenic grinding powder than ambient grinding powder. Curcumin permability is 3.1 times higher than ambient grinded powder. As a result, particle size, nutrition, protein digestion degree and permeability demonstrated a positive relationship with the decreasing grinding temperature for the powders. These results confirm that the cryogenic grinding method had good suitability to increase functionality of plants, since it could minimize the heat generated while processing and effectively reduce the particle size.

Anti-inflammatory effect of barley leaf ethanol extract in LPS-stimulated RAW264.7 macrophage (LPS로 자극한 RAW264.7 대식세포에서 보리순 에탄올 추출물의 항염증 효과)

  • Kim, Mee-Kyung;Kim, Dae-Yong
    • Food Science and Preservation
    • /
    • v.22 no.5
    • /
    • pp.735-743
    • /
    • 2015
  • This study investigated the anti-inflammatory activity of barley leaf extract in lipopolysaccharide (LPS)-stimulated RAW264.7 cells and hairless mice. Pre-treatment with barley leaf extract significantly inhibited the protein expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-II (COX-II) in a dose-dependent manner in LPS-stimulated RAW264.7 cells. Barley leaf extract also significantly inhibited the secretion of inflammatory cytokines, such as tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), interleukin-$1{\beta}$ (IL-$1{\beta}$), and interleukin-6 (IL-6). Moreover, phosphorylation of mitogen-activated protein kinases (MAPKs) and nuclear translocation of nuclear factor-kappa B (NF-${\kappa}B$) were strongly suppressed by barley leaf extract in LPS-stimulated cells. In hairless mice, barley extract significantly decreased the pathological phenotypes of contact dermatitis, such as erythema, edema, and scabs. These results indicate that barley leaf extract has an anti-inflammatory effect and therefore a possible role in the treatment of inflammatory diseases or in functional cosmetics.