• Title/Summary/Keyword: sandy loam

Search Result 623, Processing Time 0.026 seconds

Effect of Meteorological Factors on Evapotranspiration Change of Cnidium officinale Makino (기상요인이 일천궁의 증발산량 변화에 미치는 영향)

  • Seo, Young-Jin;Nam, Hyo-Hoon;Jang, Won-Cheol;Kim, Jong-Soo;Lee, Bu-Yong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.20 no.4
    • /
    • pp.366-375
    • /
    • 2018
  • Evapotranspiration (ET) information is needed for many applications in agricultural and environmental resource management because crop yields, plant growth and physiological characteristics are primarily water limited. This study was conducted to evaluate the diurnal change of ET using electronic weighing lysimeter and to determine whether the ET of Cnidium officinale Makino could be manipulated through meteorological factors such as solar radiation, windy conditions and air temperature etc., Pot has a diameter of 35 cm and an height of 38 cm. A disturbed soil of sandy loam (coarse, mixed, mesic family of Dystric Fluventic Eutroudepts) within lysimeter has a mass of approximately 40.0 kg. In 2017, 10-minute recordings of data were used for measuring actual ET, and also evaluating a relationship between ET and meteorological factors during from 2 Aug. to 6 Aug. The maximum daily ET of Cnidium officinale was $44.04{\pm}3.949g$ per hour in lysimetric measurements. Diurnal changes of ET was highly correlated with solar radiation ($r^2=0.7778$) and followed by wind speed ($r^2=0.6400$). But on the other hand, air temperature was not consistent with ET ($r^2=0.2260$). This results imply that ET of Cnidium officinaele seems to be mainly governed by radiation energy in clear days, and approximately 40% of solar radiation is likely to be converted into ET. Therefore, weighing lysimeter can be used to accurately estimate actual ET and is expected to attract a great deal of attention to reliable application of water management in agriculture.

Effects of Zeolite Application on Yield and Yield Components in Rice (Zeolite 시용에 의한 벼의 증수효과 및 요인해석)

  • Kae, Bong-Myung;Sol, Kwon-Sok;Cho, Chang-Hwan
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.32 no.4
    • /
    • pp.403-408
    • /
    • 1987
  • The milled rice yield of the fertilized Zeolite in the sandy loam as 542 Kg/10a was increased by 11% compared with the check plat as a standard cultivation. Significant positive correlations of that were found between grain yield/plant and panicle/total weight ratio or average weight of panicle, while lower correlations between ratio of riqened grains and grain yield/ plant. But significant negative correlations were found between 1,000-grain weight of rough and 4th. 5th internode/culm length ratio. It was reavealed that there were higher direct effects for ratio of ripened grains and spikelets/panicle affecting grain yield/plant through path analysis among the yield components. Moreover, organic dry matter production at 35 days after heading were heavier by 26% in active leaves, 19% in stem + leaf sheath, and 5% in panicle, respectively. Ratio of settled spikelets on the terminal of primary rachis-branch was 47% to total spikelets, and 37% in half-upper of that, moreover many spikelets settled on the terminal of rachis. Therefore, it was recognized that there were a dominant effect of apical glumous flower by fertilized Zeolite.

  • PDF

Analysis and Validation of Geo-environmental Susceptibility for Landslide Occurrences Using Frequency Ratio and Evidential Belief Function - A Case for Landslides in Chuncheon in 2013 - (Frequency Ratio와 Evidential Belief Function을 활용한 산사태 유발에 대한 환경지리적 민감성 분석과 검증 - 2013년 춘천 산사태를 중심으로 -)

  • Lee, Won Young;Sung, Hyo Hyun;Ahn, Sejin;Park, Seon Ki
    • Journal of The Geomorphological Association of Korea
    • /
    • v.27 no.1
    • /
    • pp.61-89
    • /
    • 2020
  • The objective of this study is to characterize landslide susceptibility depending on various geo-environmental variables as well as to compare the Frequency Ratio (FR) and Evidential Belief Function (EBF) methods for landslide susceptibility analysis of rainfall-induced landslides. In 2013, a total of 259 landslides occurred in Chuncheon, Gangwon Province, South Korea, due to heavy rainfall events with a total cumulative rainfall of 296~721mm in 106~231 hours duration. Landslides data were mapped with better accuracy using the geographic information system (ArcGIS 10.6 version) based on the historic landslide records in Chuncheon from the National Disaster Management System (NDMS), the 2013 landslide investigation report, orthographic images, and aerial photographs. Then the landslides were randomly split into a testing dataset (70%; 181 landslides) and validation dataset (30%; 78 landslides). First, geo-environmental variables were analyzed by using FR and EBF functions for the full data. The most significant factors related to landslides were altitude (100~200m), slope (15~25°), concave plan curvature, high SPI, young timber age, loose timber density, small timber diameter, artificial forests, coniferous forests, soil depth (50~100cm), very well-drained area, sandy loam soil and so on. Second, the landslide susceptibility index was calculated by using selected geo-environmental variables. The model fit and prediction performance were evaluated using the Receiver Operating Characteristic (ROC) curve and the Area Under Curve (AUC) methods. The AUC values of both model fit and prediction performance were 80.5% and 76.3% for FR and 76.6% and 74.9% for EBF respectively. However, the landslide susceptibility index, with classes of 'very high' and 'high', was detected by 73.1% of landslides in the EBF model rather than the FR model (66.7%). Therefore, the EBF can be a promising method for spatial prediction of landslide occurrence, while the FR is still a powerful method for the landslide susceptibility mapping.

Application of Subsurface Drip Fertigation System to Increase Growth and Yield of Maize (옥수수의 생육 및 수량 증대를 위한 지중점적 관비 시스템의 적용)

  • Jong Hyuk Kim;Yeon Ju Lee;Il Rae Rho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.68 no.3
    • /
    • pp.197-206
    • /
    • 2023
  • This study was conducted to investigate how maize (Zea maize L.) growth and yield were affected by irrigation and fertigation using a subsurface drip system. The system consisted of a buried (40 cm underground) drip pipe that can be used in a semi-permanent manner without affecting agricultural work on the ground. The amount of water required for the fertigation treatment was determined to be 24.3 tons 10a-1 for the sandy loam soil used in this experimental field. Fertigation treatments based on the previously calculated 24.3 tons 10a-1 were carried out as topdressing applications. They were applied through the subsurface drip system with the following fertilizer concentration (nitrogen only, written in kg 10a-1: N 4, N 6, N 8, N 10 ). The other treatments were irrigation only and control (non-treatment). The results indicated that the N 8 treatment was the most effective, increasing yield by 30% and 14% compared with the control and irrigation treatments, respectively. These results highlight the effectiveness of fertigation (N 8 kg 10a-1) at V6 and R1 stage as a form of topdressing fertilization using a subsurface drip system for achieving a high yield and stable maize production.

Growth environment characteristics of the habitat of Epilobium hirsutum L., a class II endangered wildlife species

  • Kwang Jin Cho;Hyeong Cheol Lee;Sang Uk Han;Hae Seon Shin;Pyoung Beom Kim
    • Journal of Ecology and Environment
    • /
    • v.47 no.4
    • /
    • pp.282-289
    • /
    • 2023
  • Background: As wildlife habitats are being destroyed and growth environments are changing, the survival of animals and plants is under threat. Epilobium hirsutum L., a species that inhabits wetlands, has held legally protected status since 2012. However, no specific measures are currently in place to protect its habitat, leading to a decline in remaining populations as a result of land use change and human activities. Results: The growth environment (including location, climate, land use, soil, and vegetation) of the five habitat sites (Samcheok, Taebaek1, Taebaek2, Cheongsong, Ulleung) of E. hirsutum L. was investigated and analyzed. These habitats were predominantly situated in flat areas with gentle south-facing slopes, at an average altitude of 452.7 m (8-726 m) above sea level in Gangwon-do and Gyeongsangbuk-do. The average annual temperature ranged 11.5℃ (9.2℃-12.9℃), whereas the average annual precipitation ranged 1,304.5 mm (1,062.7-1,590.7 mm). The surrounding land use status was mainly characterized by mountainous areas, and human interference, such as agricultural land and roads, was commonly found in proximity to these natural habitats. Soil physicochemical analysis revealed that the soil was predominantly sandy loam with a slightly high sand content. The average pH measured 7.64, indicating an alkaline environment, and electrical conductivity (EC) averaged 0.33 dS/m. Organic matter (OM) content averaged 66.44 g/kg, available phosphoric acid (P2O5) content averaged 115.73 mg/kg, and cation exchange capacity (CEC) averaged 23.43 cmolc/kg. The exchangeable cations ranged 0.09-0.43 cmol+/kg for potassium (K), 10.23-16.21 cmol+/kg for calcium (Ca), 0.67-4.94 cmol+/kg for magnesium (Mg), and 0.05-0.74 cmol+/kg for sodium (Na). The vegetation type was categorized as E. hirsutum community with high numbers of E. hirsutum L., Persicaria thunbergii (Siebold & Zucc.) H. Gross, Phragmites japonica Steud., Humulus japonicus (Siebold & Zucc.), and Bidens frondosa L.. An ecological flora analysis, including the proportion of lianas, naturalized plants, and annual herbaceous plants, revealed that the native habitat of E. hirsutum L. was ecologically unstable. Conclusions: Analysis of the habitat of E. hirsutum L., a class II endangered wildlife species, provided essential data for local conservation and restoration efforts.

Soil Physical and Chemical Properties with Plantation Regions and Stand Age in Pinus rigida and Larix kaempferi Plantations (리기다소나무와 낙엽송 인공림의 지역 및 임령에 따른 토양 특성)

  • Yang, A-Ram;Hwang, Jaehong;Cho, Minseok;Song, Sun-Wha
    • Journal of Korean Society of Forest Science
    • /
    • v.102 no.4
    • /
    • pp.578-586
    • /
    • 2013
  • This study was performed in Pinus rigida and Larix kaempferi plantations which occupy approximately 60% of artificial forest area in Korea. The objective of this study was to know the differences in soil physical and chemical properties between both plantations. Soil physical and chemical properties from published literature and analyzed soil data in national forest in 2010 and 2011 were analyzed by plantation regions and stand age of 5 years unit. Jeollanamdo in Pinus rigida plantations and Gyeongsangbuk-do in Larix kaempferi plantations showed higher soil chemical properties than those of other regions. Soil texture in both plantations was almost loam and sandy loam. Mean soil pH in Pinus rigida and Larix kaempferi plantations were 4.86 and 4.87, respectively and there was no relationship between soil pH and stand age. The mean concentrations of total nitrogen (%) and available phosphorus (mg $kg^{-1}$) were 0.21 and 11.00 for Pinus rigida plantation and 0.28 and 13.32 for Larix kaempferi plantation. In Larix kaempferi plantation, total nitrogen, available phosphorus and organic matter concentrations and C.E.C. were higher than those in Pinus rigida plantation and showed positive relationship with stand age. This positive relationship was also revealed between the exchangeable cations and soil pH. The results of this study provide an informative data in selecting tree species for planting and contribute to the establishing forest management plan for the maintenance of sustainable forests resources.

Influences of Discharge Waters from Wastewater Treatment Plants on Rice (Oryza sativa L.) Growth and Percolation Water Salinity (폐수처리장 방류수 관개가 벼생육 및 침출수 염농도에 미치는 영향)

  • Shin, Joung-Du;Lee, Jong-Sik;Kim, Won-Il;Lee, Chang-Eun;Yun, Sun-Gang;Eom, Ki-Cheol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.1
    • /
    • pp.24-31
    • /
    • 2003
  • Objective of this study was to assess rice growth and percolation water salinity under the irrigation of the discharge waters from the municipal wastewater treatment plant and from the industrial wastewater treatment plant as alternative water resources during transplanting season. Three kinds of waters were irrigated; the discharge water from an industrial wastewater treatment plant (DIWT), the discharge water from the municipal wastewater treatment plant (DMWT), and groundwater. Concentrations of $COD_{er}$, $NH_4{^+}_-N$, $Mn^{2+}$, and $Ni^+$ in DIWT, SS content and $PO_4-P$ concentrations in DMWT were higher than those of reuse water criteria of other country for agricultural irrigation. The plant height in the irrigation of DMWT was shorter by 2 cm than the groundwater irrigation except for 10 days irrigation. However, the number of tillerings was not significantly different between DMWT and the groundwater. For the harvest index, there were no significant difference between DMWT and DIWT for 20 days irrigation, but slightly higher in DIWT than that of DMWT for 30 days irrigation regardless of soil types. The salinity of percolation water in the rhizosphere with irrigation of DIWT had more twofold than DMWT, but SAR value from DMWT had no significantly different from the groundwater irrigation. The average $EC_i$ values in the rooting zone irrigated with DIWT and DMWT for 30 days after rice transplanting were 4.7 and $3.4dS\;m^{-1}$ in clay loam soil, and were 3.5 and $2.5dS\;m^{-1}$ in sandy loam soil, respectively. There was dramatic decrease in $EC_i$ value at 30 days after rice transplanting even though $EC_i$ of DIWT had more twofold than DMWT. However, $EC_i$ from DMWT had no significant difference from the groundwater. Therefore, it might be considered that there was limited possibility to irrigate DMWT to overcome drought injury of rice transplanting season in paddy field.

Effects of Soil Aggregate Stability and Wettability on Infiltration and Evaporation (토양입단(土壤粒團)의 안정성(安定性)과 친수성(親水性)이 수분침투(水分浸透) 및 증발(蒸發)에 미치는 영향(影響))

  • Jo, In-Sang;Cho, Seong-Jin;Verplanke, H.;Hartmann, R.;De Boodt, M.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.18 no.2
    • /
    • pp.121-127
    • /
    • 1985
  • This study was designed to gain practical data on the use of soil conditioners for more efficient water managements and to establish the optimum levels of structural properties for soil conditioning. A sandy loam and a silt loam soil were each treated with two different soil conditioners, hydrophobic Bitumen or hydrophilic Uresol. The perspex tube 34 cm long were packed homogeneously with air dried soil up to 2 cm below the top, then covered over 2 cm of treated or untreated aggregates. The infiltration rate into the soil columns was measured under simulated rainfall condition. The evaporation study was carried out in the wind tunnel, and the changes of soil moisture distribution of the columns following and during the evaporation were determined by a gamma ray scanner. The infiltration rate of water into the soil column was increased to 18.7-50.8% by the Uresol treatment but it was decreased to less than 25% of control by the Bitumen treatment. Evaporation was decreased to 22.0-68.1% by the Bitumen treatment and to 38.7-68.4% by the Uresol treatment. The water use efficiency of Uresol treated column was increased to more than twice as much as that of untreated soil. Aggregate stability and wetting angle were related to water infiltration and evaporation. A positive and highly significant logarismic relationship was found between the infiltration rate and stability index-wetting angle, evaporation rate and instability index-wetting angle. It was considered that the structural stability is more important than wetting angle. This is true because the structural stability is always positively correlated to water saving, however wettability is positively correlated to the infiltration, and negatively correlated to water saving during the evaporation.

  • PDF

Evaluation of the Parameters of Soil Potassium Supplying Power for Predicting Yield Response, K2O Uptake and Optimum K2O Application Levels in Paddy Soils. -II. Determination of Potassium Supplying Power by Gapon equation and Kas/Kai and Response to K2O application (수도(水稻)의 가리시비반응(加里施肥反應)과 시비량추정(施肥量推定)을 위한 가리공급력(加里供給力) 측정방법(測定方法) 평가(評價) -II. Gapon식(式)과 Kas/Kai에 의한 가리공급력(加里供給力) 측정(測定)과 시비반응(施肥反應))

  • Park, Yang-Ho;Ahn, Su-Bong;Park, Chon-Suh
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.17 no.4
    • /
    • pp.363-370
    • /
    • 1984
  • In order to predict the possible fertilizer requirement from the K supplying capacity of soil, the relative K activity ratio, Kas/Kai and Gapon coefficients, KG. were determined for the soil samples before flooding and at heading stage of rice in pot experiment. These parameters assumed as the K supplying capacity of soils were discussed through correlation with other factors such as grain yields or the amounts of $K_2O$ uptake by the rice plant. The results may be summarized as follows: 1. The KGo values in soils before flooding were 7.8, 6.6, and 7.1, whereas the Kas/Kai values were 1.37, 1.26 and 2.11, respectively, in clay, loam and sandy loam soils. 2. The significant yield responses to the application of potassium fertilizer were observed whenever the KG values in soils at heading stage become larger to the original KG values, regardless of any levels of fertilizer application. 3. The linear correlations between the exchangeable cation ratios [Kex./(Ca+Mg) ex.:me/100g] in soils and the potassium activity ratios ($[K^+]/\sqrt{[Ca^{{+}{+}}+Mg^{{+}{+}}]}$: mole/l) in equilibrium solutions were observed with different linear gradients according to the soil properties. 4. The Kas/Kai in the soils, estimated prior to the experiment, showed high correlations with the grain yields or the amounts of $K_2O$ uptake in the all treatments, while the Kas/Kai and the KGo in the soils at heading stage showed high correlations with the grain yields or the amounts of $K_2O$ uptake in only N 15 Kg/10a treatments. 5. The Kas/Kai and the KGo values determined in the soil at heading stage of rice showed high negative correlation each other and they could be used as soil factors for predicting potassium fertilizer requirement.

  • PDF

Variation Patterns in Concentration of Inorganic Nitrogen from Liquid Grass Fertilizer during Aerobic Incubation (항온 호기 배양 조건에서 잔디 예초물 액비로부터 무기화된 질소의 농도 변화)

  • Lee, Tae-Kyu;Park, Ji-Suk;Lee, Min-Jin;Kim, Jong-Sung;Ro, Hee-Myong;Kim, Sang-Jun;Jeon, Seung-Woo;Seo, Sang-Gug;Kim, Kil-Yong;Lee, Geon-Hyoung;Jeong, Byung-Gon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.1120-1125
    • /
    • 2012
  • To assess fertilizer value of an quasi-aerobically fermented liquid clipped-grass fertilizer, aerobic incubation experiment using two texturally contrasting loam (L) and sandy loam (SL) soils was conducted for 60 days to investigate temporal variations in N mineralization pattern of the liquid fertilizer applied. To do so, the quasi-aerobically fermented liquid clipped-grass fertilizer was prepared, applied to each soil at a rate of 200 kg-N $ha^{-1}$ and aerobically $25^{\circ}C$ in the dark. During incubation, soil water content was adjusted to field moisture capacity (-33 kPa of soil matric potential) by adding distilled water as necessary to maintain their initial weights. At desired time of incubation (0, 1, 5, 10, 20, 40, and 60 days after incubation), soil was sampled and analyzed for inorganic nitrogen ($NH_4{^+}$-N and $NO_3{^-}$-N) concentrations, pH, EC, total carbon contents and total nitrogen contents. Concentrations of $NH_4{^+}$-N began to decrease right after incubation for L soils, and 10 days after incubation for SL soils, while those of $NO_3{^-}$-N began to increase onset of $NH_4{^+}$-N disappearance. The results of this study showed that quasi-aerobically fermented liquid clipped-grass fertilizer could serve as an alternative to chemical N fertilizer.