• Title/Summary/Keyword: sandwich panels

Search Result 209, Processing Time 0.034 seconds

Evaluation of Mechanical Properties and Low-Velocity Impact Characteristics of Balsa-Wood and Urethane-Foam Applied to Impact Limiter of Nuclear Spent Fuel Shipping Cask (사용후핵연료 수송용기 충격완충체에 적용되는 발사목과 우레탄 폼의 기계적 특성 및 저속충격특성 평가 연구)

  • Goo, Jun-Sung;Shin, Kwang-Bok;Choi, Woo-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.11
    • /
    • pp.1345-1352
    • /
    • 2012
  • This paper aims to evaluate the low-velocity impact responses and mechanical properties of balsa-wood and urethane-foam core materials and their sandwich panels, which are applied as the impact limiter of a nuclear spent fuel shipping cask. For the urethane-foam core, which is isotropic, tensile, compressive, and shear mechanical tests were conducted. For the balsa-wood core, which is orthotropic and shows different material properties in different orthogonal directions, nine mechanical properties were determined. The impact test specimens for the core material and their sandwich panel were subjected to low-velocity impact loads using an instrumented testing machine at impact energy levels of 1, 3, and 5 J. The experimental results showed that both the urethane-foam and the balsa-wood core except in the growth direction (z-direction) had a similar impact response for the energy absorbing capacity, contact force, and indentation. Furthermore, it was found that the urethane-foam core was suitable as an impact limiter material owing to its resistance to fire and low cost, and the balsa-wood core could also be strongly considered as an impact limiter material for a lightweight nuclear spent fuel shipping cask.

A Study on Applicability of Low-Density Surface Film Copper Mesh for Aircraft (저밀도 표면필름 구리망의 비행체 적용 가능성 연구)

  • Hyun, Se-Young;Kim, Yong-Tae;Kim, Sang-Yong;Kim, Bong-Gyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.10
    • /
    • pp.841-847
    • /
    • 2021
  • In this paper, the applicability of the low-density surface film copper mesh for aircraft applications have been analyzed. Recently, low-density surface film copper mesh is developed to reduce weight and cost compared with traditional surface film copper mesh. In order to apply low-density surface film copper mesh to aircraft, it is needed to analyze its electromagnetic effects as well as structural integrity with sandwich panels to prevent pinholes. The structural integrity and electromagnetic characteristics have been analyzed for 2 samples of low-density surface film copper mesh and 1 sample of surface film copper mesh. To review the applicability of the low-density surface film, it is combined with sandwich composite panel to confirm pinhole effects. The low-density surface film has been modeled as a periodic structure and analyzed with 3D electromagnetic simulation tool. The simulation results has been verified through measured electromagnetic transmission results using free space measurements. From the results, it will be possible to use these results for the analysis and the applicability of low-density surface film copper mesh for aircraft.

Experimental Study of Fire Characteristics by Isocyanate Functional Parameter (이소시아네이트 관능기 매개인자에 의한 화재 특성의 실험적 연구)

  • Lee, Jae-Geol;Han, Kyoung-Ho;Jo, Hyung-Won;Yoon, Do-Young
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.3
    • /
    • pp.27-37
    • /
    • 2022
  • With the recent increase in the spread of ESS (Electric Storage System), the damage to human life and property is also rapidly increasing due to continuous fires caused by ESS. In the manufacture of urethane sandwich panels used in ESS, it is necessary to improve the flame retardant performance. In this study, in order to realize the flame retardant properties of flexible polyurethane foam, the effect of the tissue density of the product due to the change of the isocyanate functional group parameter that changes the physical properties of the product on the fire performance was studied. The product was manufactured by changing the density of the urethane structure, and combustion performance tests, gas toxicity tests, and smoke density tests were performed. As a result, it was confirmed that the total amount of heat released had excellent performance when the isocyanate functional group was high, and had no correlation with the maximum heat release rate. When the value of the isocyanate functional group was 2.7 or more, the collapse of the shape could be prevented. In the gas hazard test, the performance was increased when the isocyanate functional group was relatively high, so a flame retardant for the Char system, which had a dense structure and easy to form a carbonized film, was added. confirmed to be. Therefore, as a result of this study, it is thought that it will be possible to lay the foundation for the development of a flame retardant to replace the cheap urethane sandwich panel used in the past.

Analysis of Sound Insulation Performance of Honeycomb Composite Panels for Cruise Ships (크루즈선박용 허니컴 패널의 차음 성능 해석)

  • Kwon, Hyun-Wung;Hong, Suk-Yoon;Roh, Jae-Ouk;Song, Jee-Hun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.2
    • /
    • pp.234-240
    • /
    • 2014
  • In this paper, the interface matrix of honeycomb composite panel has been derived by the governing equation of a honeycomb sandwich panel. The interface matrix of honeycomb panel is added to the previously developed transfer matrix method, thus analysis of the multi-layered insulation composite panel with honeycomb is accomplished. Furthermore, predictions of sound transmission loss(STL) for the ship's insulation panel with honeycomb and mineral wool are presented. The insulation performance of the honeycomb used for skin of the ship's insulation panel is better than that of 0.35 mm steel panel by 2dB, approximately. Although honeycomb panel has inefficient insulation performance beside steel panel, honeycomb panel achieve improvements in the performance of weight reduction. The surface density of the panel with honeycomb is rather than with steel by $5.2kg/m^2$. It is decrease in weight by 31.7 %.

Impact response of a novel flat steel-concrete-corrugated steel panel

  • Lu, Jingyi;Wang, Yonghui;Zhai, Ximei;Zhou, Hongyuan
    • Steel and Composite Structures
    • /
    • v.42 no.2
    • /
    • pp.277-288
    • /
    • 2022
  • A novel flat steel plate-concrete-corrugated steel plate (FS-C-CS) sandwich panel was proposed for resisting impact load. The failure mode, impact force and displacement response of the FS-C-CS panel under impact loading were studied via drop-weight impact tests. The combined global flexure and local indentation deformation mode of the FS-C-CS panel was observed, and three stages of impact process were identified. Moreover, the effects of corrugated plate height and steel plate thickness on the impact responses of the FS-C-CS panels were quantitatively analysed, and the impact resistant performance of the FS-C-CS panel was found to be generally improved on increasing corrugated plate height and thickness in terms of smaller deformation as well as larger impact force and post-peak mean force. The Finite Element (FE) model of the FS-C-CS panel under impact loading was established to predict its dynamic response and further reveal its failure mode and impact energy dissipation mechanism. The numerical results indicated that the concrete core and corrugated steel plate dissipated the majority of impact energy. In addition, employing end plates and high strength bolts as shear connectors could prevent the slip between steel plates and concrete core and assure the full composite action of the FS-C-CS panel.

Field Survey on the Structure and Manure Treatment of Two-Storey and Sawdust Pig Houses in Korea (국내 2층 돈사와 톱밥돈사의 구조 및 분뇨처리 실태조사)

  • Jeong J. W.;Yoo Y. H.;Song J. I.;Kim T. I.;Jeon B. S.;Yang C. B.
    • Journal of Animal Environmental Science
    • /
    • v.11 no.3
    • /
    • pp.169-176
    • /
    • 2005
  • The farm house structure, ventilation system and manure treatment of two-storey buildings and sawdust pig houses were surveyed and analyzed. Based on the data for ten selected farms in five provinces during eight months, the goal is to eventually establish a standard two-storey pig house. Manure treatments were composting, slurry and activated sludge in two-storey pig houses, while fermentation method was done in sawdust pig house. The depth of sawdust as a litter material were 10 to 60cm, with a duration of 1/2, 1, 3 and 6 months, respectively. The ventilation systems were the mechanical type in two-storey pig houses and natural system in the sawdust pig house. Side wall in the two-storey pig house was enclosed with insulation materials such as block, colored metal sheet and sandwich panels. The minimum ceiling height in the first floor of the two-storey pig house was 2.0m and the maximum was 3.0m. On the second floor, ceiling height ranged from 2.0 to 2.7m. The construction cost in the two-storey systems were $700\~140$, and sidewall curtain systems were $30\~40$ thousand Won/pyung.

  • PDF

Experimental validations of fire-resistant materials for protecting LPG small storage tank from building fires (건물 화재 시 LPG소형저장탱크 보호용 화재 저항 재료 성능 실증)

  • Kim, Seung-Hwan;Kim, Kyung-Sik;Heo, Seung-Geon;Lee, Jae-Hun
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.4
    • /
    • pp.18-24
    • /
    • 2020
  • The purpose of this study is to validate thermal hinderance effects, i.e., feasibilities, of fire-proof structure for LPG tank exposed to fire from adjacent burning building. The panel materials suggested for the fire-proof structure are (1) 10 mm-thick wood, (2) wood with fireproof coating, (3) 75 mm-thick Expanded Polystyrene, (4) 75 mm-thick glass wool filled sandwich panel, and (5) 75 mm-thick autoclaved lightweight concrete. The square planar fire source of 1 ㎡, a matrix of nozzles releasing 120-140 g/s of LPG, is used to heat up the wall and the tank beyond, mimicking heat transfer from burning exterior wall finishes. The feasibility is tested by inspecting structural integrity after test, and then by examining temperatures at both sides of panels and tank's front surface as well as heat fluxes. As a result, it can be concluded that, among the suggested sample materials, fire-proof wall with ALC panel only showed the feasibility for explosion prevention with the proven evidences of structural integrity and least increase in temperature of tank.

Molding Quality Evaluation on Composite Laminate Panel for Railway Vehicle through Cure Monitoring using FBG Sensors (광섬유 FBG 센서기반 성형 모니터링을 통한 철도 차량용 복합재 내장재 패널의 성형 품질 평가)

  • Juyeop Park;Donghoon Kang
    • Composites Research
    • /
    • v.36 no.3
    • /
    • pp.186-192
    • /
    • 2023
  • Recently, in the field of railway vehicles, interest in the use of composite materials for weight reduction and transportation efficiency is increasing. Accordingly, research and commercialization development to apply composite materials to various vehicle parts are being actively conducted, and evaluation is conducted centering on post-measurement such as mechanical performance evaluation of finished products to verify quality when composite materials are applied. However, the analysis of heat and stress generated during the molding process of composite materials, which are factors that greatly affect manufacturing quality, is insufficient. Therefore, in this study, in order to verify the molding quality of composite parts for railway vehicles, the molding quality analysis was conducted for the two types of composite interior panels (laminate panel and sandwich panel) that are most actively used. To this end, temperature and strain changes were monitored during the molding process by using an FBG fiber optic sensor, which is easy to apply to the inside of the composite, and the residual strain value generated after molding was completed was measured. As a result, it was confirmed that overheating and excessive residual stress did not occur, thereby verifying the excellent molding quality of the composite interior panel for railway vehicles.

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2015 (설비공학회 분야의 최근 연구 동향 : 2015년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.6
    • /
    • pp.256-268
    • /
    • 2016
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2015. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering were carried out in the areas of flow, heat and mass transfer, cooling and heating, and air-conditioning, the renewable energy system and the flow inside building rooms. Research issues dealing with air-conditioning machines and fire and exhausting smoke were reduced. CFD seems to be spreading to more research areas. (2) Research works on heat transfer area were carried out in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the economic analysis of GHG emission, micro channel heat exchanger, effect of rib angle on thermal performance, the airside performance of fin-and-tube heat exchangers, theoretical analysis of a rotary heat exchanger, heat exchanger in a cryogenic environment, the performance of a cross-flow-type, indirect evaporative cooler made of paper/plastic film. In the area of pool boiling and condensing, the bubble jet loop heat pipe was studied. In the area of industrial heat exchangers, researches were performed on fin-tube heat exchanger, KSTAR PFC and vacuum vessel at baking phase, the performance of small-sized dehumidification rotor, design of gas-injection port of an asymmetric scroll compressor, effect of slot discharge-angle change on exhaust efficiency of range hood system with air curtain. (3) In the field of refrigeration, various studies were carried in the categories of refrigeration cycle, alternative refrigeration/energy system, system control. In the refrigeration cycle category, a cold-climate heat pump system, $CO_2$ cascade systems, ejector cycles and a PCM-based continuous heating system were investigated. In the alternative refrigeration/energy system category, a polymer adsorption heat pump, an alcohol absorption heat pump and a desiccant-based hybrid refrigeration system were investigated. In the system control category, turbo-refrigerator capacity controls and an absorption chiller fault diagnostics were investigated. (4) In building mechanical system research fields, eighteen studies were reported for achieving effective design of the mechanical systems, and also for maximizing the energy efficiency of buildings. The topics of the studies included energy performance, HVAC system, ventilation, and renewable energies, piping in the buildings. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment was mostly focused on indoor environment and building energy. The main researches of indoor environment were related to the user and location awareness technology applied dimming lighting control system, the lighting performance evaluation for light-shelves, the improvement evaluation of air quality through analysis of ventilation efficiency and the evaluation of airtightness of sliding and LS window systems. The subjects of building energy were worked on the energy saving estimation of existing buildings, the developing model to predict heating energy usage in domestic city area and the performance evaluation of cooling applied with economizer control. The studies were also performed related to the experimental measurement of weight variation and thermal conductivity in polyurethane foam, the development of flame spread prevention system for sandwich panels, the utilization of heat from waste-incineration facility in large-scale horticultural facilities.