• Title/Summary/Keyword: sand soil

Search Result 1,951, Processing Time 0.038 seconds

Friction behavior of controlled low strength material-soil interface

  • Han, WooJin;Kim, Sang Yeob;Lee, Jong-Sub;Byun, Yong-Hoon
    • Geomechanics and Engineering
    • /
    • v.18 no.4
    • /
    • pp.407-415
    • /
    • 2019
  • A controlled low strength material (CLSM) is a highly flowable cementitious material used for trench backfilling. However, when applying vertical loads to backfilled trenches, shear failure or differential settlement may occur at the interface between the CLSM and natural soil. Hence, this study aims to evaluate the characteristics of the interface friction between the CLSM and soils based on curing time, gradation, and normal stress. The CLSM is composed of fly ash, calcium sulfoaluminate cement, sand, silt, water, and an accelerator. To investigate the engineering properties of the CLSM, flow and unconfined compressive strength tests are carried out. Poorly graded and well-graded sands are selected as the in-situ soil adjacent to the CLSM. The direct shear tests of the CLSM and soils are carried out under three normal stresses for four different curing times. The test results show that the shear strengths obtained within 1 day are higher than those obtained after 1 day. As the curing time increases, the maximum dilation of the poorly graded sand-CLSM specimens under lower normal stresses also generally increases. The maximum contraction increases with increasing normal stress, but it decreases with increasing curing time. The shear strengths of the well-graded sand-CLSM interface are greater than those of the poorly graded sand-CLSM interface. Moreover, the friction angle for the CLSM-soil interface decreases with increasing curing time, and the friction angles of the well-graded sand-CLSM interface are greater than those of the poorly graded sand-CLSM interface. The results suggest that the CLSM may be effectively used for trench backfilling owing to a better understanding of the interface shear strength and behavior between the CLSM and soils.

An Experimental Study for Substitutability of Sand Mat with Precious Slag Ball (풍쇄 슬래그의 샌드매트 대체 가능성에 대한 실험적 연구)

  • Shin, Eun-Chul;Lee, Woon-Hyun;Kang, Jeong-Ku
    • Journal of the Korean Geosynthetics Society
    • /
    • v.9 no.2
    • /
    • pp.1-9
    • /
    • 2010
  • At present, the sand mat method is actively used for improvement of soft ground. But, there are some problems related with sand mat which has been used as a way to accelerate consolidation settlement. First of all, insufficiency of sand due to imbalances in market supply and demand is the one of the biggest problems, which makes price high of sand and delays a term of total construction work. Moreover, it is necessary to preserve integrity of environment from natural disruption caused by indiscreet quarrying and dredging operation to supply sand for soil improvement construction site. This paper presents the feasibility study to use of Precious Slag Ball instead of sand mat as the replacing material through the basic soil property tests, the medium of discharge capacity test and analysis of settlement property. It is also evaluates the performance of Precious Slag Ball as a sand mat in terms of discharge capacity, ground settlement by the K-Embank program based on field experimental work.

  • PDF

The Estimation of the Loss Possibility of Zeolite in Sandy Soil (사질토양(砂質土壤)에서의 Zeolite 유실(流失) 가능성(可能性)의 추정(推定))

  • Kang, Shin-Jyung;Choi, Jyung
    • Applied Biological Chemistry
    • /
    • v.29 no.3
    • /
    • pp.311-317
    • /
    • 1986
  • This experiment was conducted to find out the minimum size of pores through that Zeolite particles moved vertically out with percolated solution in the sand column and to estimate whether they were lost through the pores in the field sandy soil. The results were as follows. 1. The amount of Zeolite loss through sand columns was increased in the order of the columns filled with $2{\sim}1>1{\sim}0.5>0.5>0.25mm$ sand particles. 2. The Zeolite particles lost through columns filled with $1{\sim}0.5$ and $0.5{\sim}0.25mm$ sand were clay fraction. 3. The pore sire that clay fraction of Zeolite mineral could migrate through was determined to be above $150{\mu}m$ and Jangchon subsoil was presumed to have possibility of Zeolite loss in consideration of its pore size distribution. 4. The suitable particle size of Zeolite for application in sandy soil was presumed to be above $2{\mu}m$.

  • PDF

Friction Behavior at the Soil/Geosynthetic Interface in Respect of Efficiency (효율관점에서 흙/토목섬유 접촉면에서의 마찰특성)

  • Ahn, Hyun-Ho;Shim, Seong-Hyeon;Shim, Jai-Beom;Lee, Seok-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.10
    • /
    • pp.65-72
    • /
    • 2007
  • Large-scale direct shear tests were conducted in order to investigate both the shear strength of soil itself and the friction behavior at the interface of soil/geosynthetics in respect of efficiency in this study. Sand, crushed stone and three types of geotextile (i.e. one woven geotextile and two nonwoven geotextiles) were used in the experimental program. The considered interfaces for the evaluation of interface shear strength in this study included sand/sand, crushed stone/crushed stone, sand/woven geotextile, crushed stone/woven geotextile, crushed stone/nonwoven geotextile-A and crushed stone/nonwoven geotextile-B. The results showed that the efficiency of 84% was obtained at the interface of sand/woven geotextile compared with the shear strength of sand itself (i.e. sand/sand interface). The efficiencies of 74%, 83% and 72% were obtained at the interface of crushed stone/nonwoven geotextile-A, crushed stone/nonwoven geotextile-B and crushed stone/woven geotextile, respectively compared with the shear strength of crushed stone itself (i.e. crushed stone/crushed stone interface).

Evaluation of Sand Replacement Method for Determination of Soil Density (모래 치환법을 이용한 흙의 밀도 시험에 관한 평가)

  • Park, Sung-Sik;Choi, Hyun-Seok
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.5
    • /
    • pp.47-52
    • /
    • 2009
  • A sand replacement method is commonly used to determine the density of the compacted soils. The density of the test or compacted soil is computed on the assumption that the calibration container has approximately the same size or volume and allows the sand to deposit approximately in the same way as a test hole in the field. The sand filling process is simulated in the laboratory and its effect on the determination of density is investigated. Artificially-made holes with different heights and bottom shapes are prepared to simulate various shapes of the test hole in the field. Three sands with different gradations are used in the testing to examine how sand grain size influences the determination of density in the field. As the height of a test hole increases, the error between known density and calculated density decreases, regardless of the types of test hole and sand used. The results of this study can be used to reevaluate and revise the test method for soil density by the sand replacement method.

Impact of Biochar Particle Shape and Size on Saturated Hydraulic Properties of Soil

  • Lim, Tae-Jun;Spokas, Kurt
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • BACKGROUND: Different physical and chemical properties of biochar, which is made out of a variety of biomass materials, can impact water movement through amended soil. The objective of this research was to develop a decision support tool evaluating the impact of the shape and the size distribution of biochar on soil saturated hydraulic conductivity ($K_{sat}$). METHODS AND RESULTS: Plastic beads of different size and morphology were compared with biochar to assess impacts on soil $K_{sat}$. Bead and biochar were added at the rate of 5% (v/w) to coarse sand. The particle size of bead and biochar had an effect on the $K_{sat}$, with larger and smaller particle sizes than the original sand grain (0.5 mm) decreasing the $K_{sat}$ value. The equivalent size bead or biochar to the sand grains had no impact on $K_{sat}$. The amendment shape also influenced soil hydraulic properties, but only when the particle size was between 3-6 mm. Intra-particle porosity had no significant influence on the $K_{sat}$ due to its small pore size and increased tortuosity compared to the inter-particle spaces (macro-porosity). CONCLUSION: The results supported the conclusion that both particle size and shape of the amended biochar impacted the $K_{sat}$ value.

Experimental Investigation of Seepage Properties on Weathered Residual Soils (풍화토의 침투 특성에 대한 실험적 고찰)

  • 권형민;김창엽;박영호;정충기;김명모
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.1
    • /
    • pp.75-82
    • /
    • 2004
  • To evaluate the characteristics of permeability in weathered residual soil, flexible wall permeameter tests are performed using undisturbed samples. The Influence of hydraulic gradient and confining pressure on the permeability of weathered residual soil is analyzed. To compare the characteristics of permeability between weathered soil and sand, similar tests are performed using Jumoonjin sand. Also, piping model tests are performed to investigate the piping resistance of weathered residual soil. As a result, weathered residual soil shows very dependable permeability on hydraulic gradient and very large resisting ability against piping compared with sand.

PAHs 오염 토양내 오존이동특성;함수율과 수분과 토양 유기물의 영향

  • 배기진;정해룡;최희철
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.04a
    • /
    • pp.140-143
    • /
    • 2001
  • The packed column experiments were conducted with commercial Jumunjin sand(SOM content : 0.01 %) and a field soil(SOM content : 0.08 %) in order to understand the effects of water content and soil organic matter(SOM) on the transport of gaseous ozone in unsaturated soil contaminated with phenanthrene. Water content and SOM content were artificially controlled. As water content increased, earlier breakthrough was observed in the beginning of BTC of ozone, because direct contact of gaseous ozone with SOM and phenanthrene was prevented by water film formed between soil particles and gaseous ozone. The total removal of phenanthrene in Jumunjin sand was not affected by water content which was more than 99% at different water content(4.4, 8, 17.3%). However, the removal in field soil at water content 6.5 % and 20 % was 98% and 80 %.

  • PDF

Clogging Test on Drainage Materials for Soft Ground Improvement (연약지반 개량용 배수재의 Clogging현상에 관한 실험적 연구)

  • Koh, Yong-Il;Kim, Hong-Taek;Park, Young-Ho;Kim, Dae-Young
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.181-188
    • /
    • 2004
  • Composite soil methods among granular pile merhods that we could improve soft ground of fine soil particles by, have permeability as one of fundamental principals. The catual state, that voids of sand or gravel, etc. of granular soil as drainage materials are clogged by fine soil particles, is 'clogging'. In this study, it is analysed that using sand or gravel, etc. of granular soil as drainage materials, experiment are made by clogging tester on several condition.

  • PDF

Microwave Remediation of Soils Contaminated by Volatile Organic Chemicals (마이크로파에 의한 휘발성 유기토양오염물질 제거에 관한 연구)

  • 문경환;김우현;이병철;김덕찬
    • Journal of Environmental Health Sciences
    • /
    • v.22 no.3
    • /
    • pp.116-122
    • /
    • 1996
  • This study has been focused on the applicability of microwave treatment of soil contaminated by volitile organic chemicals. Substrates studied were sand and sandy soil. These substrates were impregnated with toluene, tetrachloroethylene, o-xylene and p-dichlorobenzene. The microwave treatment was conducted in a modified domestic microwave oven: 2450 MHz, 700 W. The sandy soil temperature added water went up rapidly to about 130$\circ$C for 4 minutes. And then, the temperature appeared to plateau out. A series of tests were performed to depict the effectiveness of microwave treatment technique to organic contaminants from soils. Removal efficiencies in sandy soil and sand were increased with increasing water content and exposure time. Microwave radiation penetrates the soil and heats water throughout the matrix. Therefore, addition of a certain amount of water to the contaminated soil can efficiently enhance the ability of the soil to absorb microwave energy and promote the evaporation of the volitile contaminants. And the vapour pressure of impregnated organic contaminants becomes lower. the removal efficiency becomes poor.

  • PDF