Browse > Article
http://dx.doi.org/10.5338/KJEA.2018.37.1.09

Impact of Biochar Particle Shape and Size on Saturated Hydraulic Properties of Soil  

Lim, Tae-Jun (Division for Korea Program on International Agriculture, Rural Development Administration)
Spokas, Kurt (USDA-ARS, Soil and Water Management Unit)
Publication Information
Korean Journal of Environmental Agriculture / v.37, no.1, 2018 , pp. 1-8 More about this Journal
Abstract
BACKGROUND: Different physical and chemical properties of biochar, which is made out of a variety of biomass materials, can impact water movement through amended soil. The objective of this research was to develop a decision support tool evaluating the impact of the shape and the size distribution of biochar on soil saturated hydraulic conductivity ($K_{sat}$). METHODS AND RESULTS: Plastic beads of different size and morphology were compared with biochar to assess impacts on soil $K_{sat}$. Bead and biochar were added at the rate of 5% (v/w) to coarse sand. The particle size of bead and biochar had an effect on the $K_{sat}$, with larger and smaller particle sizes than the original sand grain (0.5 mm) decreasing the $K_{sat}$ value. The equivalent size bead or biochar to the sand grains had no impact on $K_{sat}$. The amendment shape also influenced soil hydraulic properties, but only when the particle size was between 3-6 mm. Intra-particle porosity had no significant influence on the $K_{sat}$ due to its small pore size and increased tortuosity compared to the inter-particle spaces (macro-porosity). CONCLUSION: The results supported the conclusion that both particle size and shape of the amended biochar impacted the $K_{sat}$ value.
Keywords
Biochar size distribution; Saturated hydraulic conductivity; Tortuosity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kameyama, K., Miyamoto, T., Shiono, T., & Shinogi, Y. (2012). Influence of sugarcane bagasse-derived biochar application on nitrate leaching in calcaric dark red soil. Journal of Environmental Quality, 41(4), 1131-1137.   DOI
2 Keller, T., Sutter, J. A., Nisse, K., & Rydberg, T. (2012). Using field measurement of saturated soil hydraulic conductivity to detect low-yielding zones in three Swedish fields. Soil and Tillage Research, 124, 68-77.   DOI
3 Keren, R., Kreit, J., & Shainberg, I. (1980). Influence of size of gypsum particles on the hydraulic conductivity of soils. Soil Science, 130(3), 113-117.   DOI
4 Klute, A., & Dirksen, C. (1986). Hydraulic conductivity and diffusivity: Laboratory methods. Methods of soil analysis: part 1-physical and mineralogical methods, (ed. Klute, a.), pp. 687-734, Madison, WI, USA.
5 Herath, H. M. S. K., Camps-Arbestain, M., & Hedley, M. (2013). Effect of biochar on soil physical properties in two contrasting soils: An Alfisol and an Andisol. Geoderma, 209-210, 188-197.   DOI
6 Hillel, D. (1998). Environmental soil physics: Fundamentals, applications, and environmental considerations, pp. 129-198, Academic Press, New York, USA.
7 Bouma, J., Jongerius, A., Boersma, O., Jager, A., & Schoonderbeek, D. (1977). The Function of Different Types of Macropores During Saturated Flow through Four Swelling Soil Horizons. Soil Science Society of America Journal, 41(5), 945-950.   DOI
8 Smettem, K. R. J., & Bristow, K. L. (1999). Obtaining soil hydraulic properties for water balance and leaching models from survey data. 2. Hydraulic conductivity. Australian Journal of Agricultural Research, 50(7), 1259-1262.   DOI
9 Saxton, K. E., Rawls, W. J., Romberger, J. S., & Papendick, R. I., (1986). Estimating generalized soilwater characteristics from texture. Soil Science society of America Journal, 50(4), 1031-1036.   DOI
10 Shaaban, A., Se, N. M., Mitan, N. M. M., & Dimin, M. F. (2013). Characterization of biochar derived from rubber wood sawdust through slow pyrolysis on surface porosities and functional groups. Procedia Engineering, 68, 365-371.   DOI
11 Coelho, D., Thovert, J. F., & Adler, P. M. (1997). Geometrical and transport properties of random packings of spheres and aspherical particles. Physical Review E, 55(2), 1959-1978.   DOI
12 Brewer, C. E., Chuang, V. J., Masiello, C. A., Gonnermann, H., Gao, X., Dugan, B., Driver, L. E., Panzacchi, P., Zygourakis, K., & Davies, C. A. (2014). New approaches to measuring biochar density and porosity. Biomass and Bioenergy, 66, 176-185.   DOI
13 Brockhoff, S. R., Christians, N. E., Killorn, R. J., Horton, R., & Davis, D. D. (2010). Physical and mineral-nutrition properties of sand-based turf grass root zones amended with biochar. Agronomy Journal, 102(6), 1627-1631.   DOI
14 Campbell, G. S. (1985). Soil physics with BASIC: transport models for soil-plant systems, pp. 49-59, Elsevier Science, New York, USA.
15 De Mendiburu, F. (2014). Agricolae: statistical procedures for agricultural research. R package version, 1(1).
16 Friedman, S. P., & Robinson, D. A. (2002). Particle shape characterization using angle of repose measurements for predicting the effective permittivity and electrical conductivity of saturated granular media. Water Resources Research, 38(11), 1236-1246.
17 Githinji, L. (2014). Effect of biochar application rate on soil physical hydraulic properties of a sandy loam. Archives of Agronomy and Soil Science, 60(4), 457-470.   DOI
18 Gray, M., Johnson, M.G., Dragila, M.I., & Kleber, M. (2014). Water uptake in biochars: The roles of porosity and hydrophobicity. Biomass and Bioenergy, 61, 196-205.   DOI
19 Atkinson, C., Fitzgerald, J., & Hipps, N. (2010). Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant and Soil, 337(1-2), 1-18.   DOI
20 Abel, S., Peters, A., Trinks, S., Schonsky, H., Facklam, M., & Wessolek, G. (2013). Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil. Geoderma, 202-203, 183-191.   DOI
21 Barnes, R. T., Gallagher, M. E., Masiello, C. A., Liu, Z., & Dugan, B. (2014). Biochar-induced change in soil hydraulic conductivity and dissolved nutrient fluxes constrained by laboratory experiment. PLoS One, 9(9), e108340.   DOI
22 Bigelow, C. A., Bowman, D. C., & Cassel, D. K. (2004). Physical properties of three sand size classes amended with inorganic materials or sphagnum peat moss for putting green rootzones. Crop Science, 44(3), 900-907.   DOI
23 Bouma, J. (1982). Measuring the hydraulic conductivity of soil horizons with continuous macropores. Soil Science Society of America Journal, 46(2), 438-441.   DOI
24 Mallants, D., Mohanty, B. P., Vervoort, A., & Feyen, J. (1997). Spatial analysis of saturated hydraulic conductivity in a soil with macropores. Soil Technology, 10(2), 115-131.   DOI
25 Laird, D. A., Fleming, P., Davis, D. D., Horton, R., Wang, B., & Karlen, D. L. (2010). Impact of biochar amendments on the quality of a typical Midwestern agricultural soil. Geoderma, 158(3-4), 443-449.   DOI
26 Lal, R., & Shukla, M. K. (2004). Porosity, In Principles of soil physics, PP. 140-152, Marcel Dekker INC., USA.
27 Lim, T. J., Spokas, K., Feyereisen, G., & Novak, J. (2016). Predicting the impact of biochar additions on soil hydraulic properties. Chemosphere, 142, 136-144.   DOI
28 McKeague, J. A., Wang, C., & Topp, G. C. (1982). Estimating saturated hydraulic conductivity from soil morphology. Soil Science Society of America Journal, 46(6), 1239-1244.   DOI
29 Mukherjee, A., Lal, R., & Zimmerman, A. R. (2014). Effects of biochar and other amendments on the physical properties and greenhouse gas emissions of an artificially degraded soil. Science of Total Environment, 487, 26-36.   DOI
30 Moutier, M., Shainberg, I., & Levy, G. J. (2000). Hydraulic gradient and wetting rate effects on the hydraulic conductivity of two calcium vertisols. Soil Science Society of America Journal, 64(4), 1211-1219.   DOI
31 Oguntunde, P. G., Abiodun, B. J., Ajayi, A. E., & Van de Giesen, N. (2008). Effects of charcoal production on soil physical properties in Ghana. Journal of Plant Nutrition and Soil Science, 171(4), 591-596.   DOI
32 Pathan, S. M., Aylmore, L. A. G., & Colmer, T. D. (2003). Properties of several fly ash materials in relation to use as soil amendments. Journal of Environmental Quality, 32(2), 687-693.   DOI
33 West, L. T., Abrew, M. A., & Bishop, J. P. (2008). Saturated hydraulic conductivity of soils in the Southern Piedmont of Georgia, USA: Field evaluation and relation to horizon and landscape properties. Catena, 73(2), 174-179.   DOI
34 Jong, W. R., Kuo, T. H., Ho, S. W., Chiu, H. H., & Peng, S. H. (2007). Flows in rectangular microchannels driven by capillary force and gravity. International Communications in Heat and Mass Transfer, 34(2), 186-196.   DOI
35 Joseph, S. D., Camps-Arbestain, M., Lin, Y., Munroe, P., Chia, C. H., Hook, J., van Zwieten, L., Kimber, S., Cowie, A., Singh, B. P., Lehmann, J., Foidl, N., Smernik, R. J., & Amonette, J. E. (2010). An investigation into the reactions of biochar in soil. Australian Journal of Soil Research, 48(7), 501-515.   DOI
36 Juang, C. H., & Holtz, R. D. (1985). Fabric, pore size distribution, and permeability of sandy soils. Internatinal Journal Geotechnical Engineering, 112(9), 855-868.
37 Uzoma, K. C., Inoue, M., Andry, H., Fujimaki, H., Zahoor, A., & Nishihara, E. (2011). Influence of biochar application on sandy soil hydraulic properties and nutrient retention. Journal of Food, Agriculture and Environment, 9(3-4), 1137-1143.
38 Vervoort, R. W., & Cattle, S. R. (2003). Linking hydraulic conductivity and tortuosity parameters to pore space geometry and pore-size distribution. Journal of Hydrology, 272(1-4), 36-49.   DOI
39 Yargicoglu, E. N., Sadasivam, B. Y., Reddy, K. R., & Spokas, K. (2015). Physical and chemical characterization of waste wood derived biochars. Waste Management, 36, 265-268.
40 Yu, X. Y., Ying, G. G., & Kookana, R. S. (2006). Sorption and desorption behaviors of diuron in soils amended with charcoal. Journal of Agricultural and Food Chemistry, 54(22), 8545-8550.   DOI
41 Yun, M. J., Yu, B. M., Zhang, B., & Huang, M. T. (2005). A geometry model for totuosity of streamtubes in porous media with spherical particles. Chinese Physics Letters, 22(6), 1464-1467.   DOI
42 Sperry, J. M., & Peirce, J. J. (1995). A model for estimating the hydraulic conductivity of granular material based on grain shape, grain size, and porosity. Ground Water, 33(6), 892-898.   DOI
43 Rouquerol, F., Rouquerol, J., & Sing, K. (1999). Adsorption by powders and porous solids, Academic Press, London. pp. 51-92.
44 Sun, H., Hockaday, W. C., Masiello, C. A., & Zygourakis, K. (2012). Multiple controls on the chemical and physical structure of biochars. Industrial & Engineering Chemistry Research, 51(9), 3587-3597.   DOI
45 Quin, P. R., Cowie, A. L., Flavel, R. J., Keen, B. P., Macdonald, L. M., Morris, S. G., Singh, B. P., Young, I. M., & Van Zwieten, L. (2014). Oil mallee biochar improves soil structural properties-A study with x-ray micro-CT. Agriculture, Ecosystem & Environment, 191, 142-149.   DOI
46 R Core Team. (2015). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. (https://www.R-project.org/)
47 Reynolds, W. D., Bowman, B. T., Brunke, R. R., Drury, C. F., & Tan, C. S. (2000). Comparison of tension infiltrometer, pressure infiltrometer, and soil core estimates. Soil Science Society of America Journal, 64(2), 478-484.   DOI
48 Rogovska, N., Laird, D. A., Rathke, S. J., & Karlen, D. L. (2014). Biochar impact on Midwestern Mollisols and maize nutrient availability. Geoderma, 230-231,340-347.   DOI
49 Rouquerol, J., Avnir, D., Fairbridge, C. W., Everett, D. H., Haynes, J. M. & Pernicone, N. (1994). Recommendations for the characterization of porous solids (Technical Report). Pure and Applied Chemistry, 66(8), 1739-1758.   DOI