• Title/Summary/Keyword: sand density

Search Result 669, Processing Time 0.022 seconds

The Experimental Study on the Long-term Creep Settlements of Nam-Hae Sands (남해안 모래의 장기 크리프 침하 특성에 관한 실험적 연구)

  • Park, Eonsang
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.9
    • /
    • pp.21-28
    • /
    • 2018
  • In this study, a standard consolidation test (Oedometer) was performed on the relative density of sand in the south coast to evaluate long-term creep settlement characteristics. Experimental results show that the cumulative settlement at the final loading stage decreases as the relative density increases and the variation of the void ratio decreases. As a result of analyzing the settlement rate of long-term creep of sand, creep settlement of 4.7~11.0% occurred depending on relative density with respect to total settlement. The creep parameter, Beta, of Schmertmann et al. (1978) was estimated to be 0.17~0.40 (average 0.21), and it tended to converge to a certain value when the load step becomes more than a certain level. It was found that there is no significant difference in the creep parameter depending on the layer thickness, and it was confirmed that the creep parameter could be applied regardless of the field layer thickness.

A Study on the Room Temperature Properties of Molding Sand with different Sand Grain Size (규사(硅砂)의 입도(粒度)에 따른 주물사(鑄物砂)의 상온성질(常溫性質)에 관(關)한 연구(硏究))

  • Choi, Dong-Soo;Lee, Kye-Won
    • Journal of Korea Foundry Society
    • /
    • v.3 no.3
    • /
    • pp.167-173
    • /
    • 1983
  • The effect of sand grain size on the various properties of mold is not only basic but important interest which we have to deal with.And the relation among the various properties of mold (strength, permeability, flowability, compactability, hardness, deformation, toughness etc.) is very complicated and inaccurate, so we can delineate the behavior of mixture (sand+water+bentonite) with experience only. Within recent years a so-called rigid-water theory has been accepted as a means of advancing logical explanations for the research aimed at delineating sand-clay-water relationships. By changing grain size or mesh no. of grain, specimens have been subjected to green compressive strength, permeability, deformation, flowability, compactablity, toughness at room temperature. Under constant mulling energy and ratio of water/bentonite, the results obtained were as follows: 1. With decreasing grain size green compressive strength of the specimen increased. 2. With decreasing grain size permeability decreased. 3. With decreasing grain size flowability and bulk density decreased but compactability increased. 4. With decreasing grain size deformation decreased but toughness increased. 5. At 60 mesh no., the properties of specimen are conspicuously changed. The reason is that the total surface area of sand grain which affects the type of bonding between sand grains is more changed at 60 mesh number.

  • PDF

Heat Transfer to a Downward Moving Solid Particle Bed Through a Circular Tube (원형튜브내에서 이동중인 고체입자층의 열전달 특성연구)

  • 이금배;박상일
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.6
    • /
    • pp.1551-1558
    • /
    • 1994
  • An experiment was conducted to investigate whether an equation of heat transfer coefficient derived form energy equation of two-phase plug flow can be actually applied to the industrial field. The heat is constantly transfered to the sand beds from the wall of heat exchanger while the sand moves down through cylindrical heat exchanger by gravity from feed hooper. To increase heat transfer, turbulators such as glass ball and steel pipe packings were used. In addition, the experiment in the case of fluidizing the sand beds was also carried out. The temperatures of the sand beds and the wall were measured along the heat exchanger axis. The density and porosity of the sand beds were also measured. The deviations of the mean velocity of sands from the velocity on the wall surface because of the slip conditions on the wall were negligible (within 3%). The heat transfer coefficients when the turbulators were used and when the sand beds were fluidized were found to be much greater than those of the plain plug flow.

Ecological Studies on the Coastal Plants in Korea-Floristic Compositon and Standing Crop of the Sand Duen on the Southern Coast (한국 해안식물의 생태학적 연구 - 남해안의 사구식물군락의 종조성과 현존량)

  • Lee, Woo Tchul;Sand-Keun Chon
    • The Korean Journal of Ecology
    • /
    • v.6 no.3
    • /
    • pp.177-186
    • /
    • 1983
  • Vegetation types and their standing crop in the sand dune on the south coast of Korea was investigated by the method of Curtis, J.T. and McIntosh, R.P. (1951). The relationship between vegetation types and environmental factors was also analyzed. The dominant species in the vegetations of the south coast sand dune were Carex pumila, Calystegia soldamella, Imperata cylindrica var. koenigii, Vitex rotundifolia, Ixeris repens, Carex kobomugi, Zoysia macrostachya. The species density in the sand dune vegetation increased with the distance from the coast, psammophyte and rhizome psammophyte decreased with the distance from the coast but other plants increased. The standing crop of the sand dune vegetatiion was average $53.79g/m^2$. An individual standing crop of Vitex routundifolia and Carex kobomugi varied with the curve of secondary degree. The salt content of the sand dune soil from 2.95 to 11.78 mg %, and it was not significant differences among stands, but it was varied with the distance form the coast. Negative relationship between warmth index and aboveground standing crop was found and the formula y=283.8886 - 2.4910X could be estimated.

  • PDF

Performance of Zoysia spp. and Axonopus compressus Turf on Turf-Paver Complex under Simulated Traffic

  • Chin, Siew-Wai;Ow, Lai-Fern
    • Weed & Turfgrass Science
    • /
    • v.5 no.2
    • /
    • pp.88-94
    • /
    • 2016
  • Vehicular traffic on turf results in loss of green cover due to direct tearing of shoots and indirect long-term soil compaction. Protection of turfgrass crowns from wear could increase the ability of turf to recover from heavy traffic. Plastic turfpavers have been installed in trafficked areas to reduce soil compaction and to protect turfgrass crowns from wear. The objectives of this study were to evaluate traffic performance of turfgrasses (Zoysia matrella and Axonopus compressus) and soil mixture (high, medium and low sand mix) combinations on turf-paver complex. The traffic performance of turf and recovery was evaluated based on percent green cover determined by digital image analysis and spectral reflectance responses by NDVI-meter. Bulk density cores indicated significant increase in soil compaction from medium and low sand mixtures compared to high sand mixture. Higher reduction of percent green cover was observed from A. compressus (30-40%) than Z. matrella (10-20%) across soil mixtures. Both turf species displayed higher wear tolerance when established on higher sand (>50% sand) than low sand mixture. Positive turf recovery was also supported by complementary spectral responses. Establishment of Zoysia matrella turf on turfpaver complex using high sand mixture will result in improved wear tolerance.

Soluble Manganese Removal Using Manganese Oxide Coated Media (MOCM) (산화망간피복여재를 이용한 용존망간 제거)

  • Kim, Jinkeun;Jeong, Sechae;Ko, Suhyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.6
    • /
    • pp.813-822
    • /
    • 2006
  • Soluble manganese removal was analyzed as a function of filter media, filter depth, presence or absence of chlorination, and surface manganese oxide concentration in water treatment processes. Sand, manganese oxide coated sand (MOCS), sand+MOCS, and granular activated carbon(GAC) were used as filter media. Manganese removal, surface manganese oxide concentration, turbidity removal, and regeneration of MOCS in various filter media were investigated. Results indicated that soluble manganese removal in MOCS was rapid and efficient, and most of the removal happened at the top of the filter. When filter influent (residual chlorine 1.0mg/L) with an average manganese concentration of 0.204mg/L was fed through a filter column, the sand+MOCS and MOCS columns can remove 98.9% and 99.2% of manganese respectively on an annual basis. On the other hand, manganese removal in sand and the GAC column was minimal during the initial stage of filtration, but after 8 months of filter run they removed 99% and 35% of manganese, respectively. Sand turned into MOCS after a certain period of filtration, while GAC did not. In MOCS, the manganese adsorption rate on the filter media was inversely proportional to the filter depth, while the density of media was proportional to the filter depth.

Engineering characteristics of dune sand-fine marble waste mixtures

  • Qureshi, Mohsin U.;Mahmood, Zafar;Farooq, Qazi U.;Qureshi, Qadir B.I.L.;Al-Handasi, Hajar;Chang, Ilhan
    • Geomechanics and Engineering
    • /
    • v.28 no.6
    • /
    • pp.547-557
    • /
    • 2022
  • Dune sands are poorly graded collapsible soils lacking fines. This experimental study explored the technical feasibility of sustainable invigoration of fine waste materials to improve the geotechnical properties of dune sand. The fine waste considered in this study is fine marble waste. The fine waste powder was mixed with dune sand at different contents (5, 10,15, 20, 25, 50%), where the gradation, void ratio, compaction, and shear strength characteristics were assessed for each fine marble waste -dune sand blend. The geotechnical properties of the dune sand-fine marble waste mix delineated in this study reveal the enhancement in compaction and gradation characteristics of dune sand. According to the results, the binary mixture of dune sand with 20% of fine marble waste gives the highest maximum dry density and results in shear strength improvement. In addition, a numerical study is conducted for the practical application of the binary mix in the field and tested for an isolated shallow foundation. The elemental analysis of the fine marble waste confirms that the material is non-contaminated and can be employed for engineering applications. Furthermore, the numerical study elucidated that the shallow surface replacement of the site with the dune sand mixed with 20% fine marble waste gives optimal performance in terms of stress generation and settlement behavior of an isolated footing. For a sustainable mechanical performance of the fine marble waste mixed sand, an optimum dose of 20% fine marble waste is recommended, and some correlations are proposed. Thus, for improving dune sand's geotechnical characteristics, the addition of fine marble waste to the dune sand is an environment-friendly solution.

The Behavior of Dry Sand under Dynamic Loading -A Study on the Vertical Vibration (건조사질토의 동적거동 -수직진동에 의한 연구)

  • Kim, Su-Il;Jeong, Sang-Seom;An, Yeong-Hun
    • Geotechnical Engineering
    • /
    • v.11 no.4
    • /
    • pp.37-48
    • /
    • 1995
  • The dynamic behavior of dry sand under different vibration conditions is studied through laboratory experiments. Sinusoidal and random vibration experiments of sand are carried out in vertical direction under various surcharge loads. Five different sand samples are selected for the azperiment. They are composed of four different -size samples of particles and one sample which is simulated the field condition. In case of sinusoidal vibration, the change in relative density is measured with acceleration levels. To produce an acceleration, the vibration amplitude is maintained within the range of 0.4mm~0.6mm and the vibration frequency is changed within the range of 3Hz~40Hz. In case of random vibration, the combined sinusoidal acceleration is produced by a random vibration generator and the change in relative density is measured by an accelerometer. Based on the experimental results, it is found that the sandy soil is compacted to 94%~99% of relative density by vertical acceleration and the peak acceleration producing the maximum relative density is proportional to the difference between maximum and minimum void ratios. It is also found that the effect of surcharge loading : the greater the surcharge loading, the larger the change in relative density and the greater the acceleration required to change the relative density.

  • PDF

Evaluation for the Manufacturing Characteristics and Thermal Conductivity of Engineering Scale Bentonite-Sand Buffer Blocks (공학규모 벤토나이트-모래 완충재 블록의 성형특성 및 열전도도 평가)

  • Lee, Deuk-Hwan;Yoon, Seok;Kim, Jin-Seop;Lee, Gi-Jun;Kim, Ji-Won;Kim, Min-Jun
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.12
    • /
    • pp.113-123
    • /
    • 2022
  • The required density relationship according to the press pressure of the floating die method and the homogeneity of the density distribution in the buffer block was evaluated to analyze the manufacturing characteristics of engineering scale bentonite-sand buffer blocks. In addition, the thermal conductivity was measured and compared with that of the pure bentonite buffer block to evaluate the level of thermal conductivity performance improvement of the bentonite-sand buffer material. As a result, it was confirmed that the standard deviation of dry density decreased to 0.011 and showed a homogeneous density distribution under the condition of press pressure greater than 400 kg/cm2. Furthermore, as a result of the thermal conductivity test, the thermal conductivity of the buffer with optimum moisture content conditions was 1.345 and 1.261 W/(m·K) under the press pressure of 400 and 600 kg/cm2, respectively. It increased by 16.1% and 11.0% compared to the pure bentonite buffer material. Based on the results of this study, it is judged that it can be used as fundamental data for manufacturing a homogeneous bentonite-sand buffer block on an engineering scale.

Evaluation of the Sequential Behavior of Tieback Wall in Sand by Small Scale Model Tests

  • Seo, Dong-Hee;Chang, Buhm-Soo;Jeong, Sang-Seom;Kim, Soo-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.3
    • /
    • pp.113-129
    • /
    • 1999
  • In this study, a total of 12 types of sequential model tests were conducted at the laboratory for small scale anchored walls. The sequential behavior for flexible wall embedded in sand was investigated by varying degrees of relative density of Joomoonjin sand and flexibility number of model wall. The model tests were carried out in a 1000mm width, 1500mm length, and 1000mm high steel box. Load cells, pressure cells, displacement transducer and dial gauges were used to measure the anchor forces, lateral wall deflections, lateral earth pressures and vertical displacements of ground surface, respectively. Limited model tests were performed to examine the parameters for soil-wall interaction model and the formulation of analytical method was revised in order to predict the behavior of anchored wall in sand. Based on the model tests and proposed analytical method, model simulations were performed and the predictions by the present approach were compared with measurements by the model tests and predictions by other commercial programs. It is shown that the prediction by the present approach simulates qualitatively well the general trend observed for model test.

  • PDF