DOI QR코드

DOI QR Code

The Experimental Study on the Long-term Creep Settlements of Nam-Hae Sands

남해안 모래의 장기 크리프 침하 특성에 관한 실험적 연구

  • Park, Eonsang (Department of Civil Engineering, Bucheon University)
  • Received : 2018.07.23
  • Accepted : 2018.08.23
  • Published : 2018.09.01

Abstract

In this study, a standard consolidation test (Oedometer) was performed on the relative density of sand in the south coast to evaluate long-term creep settlement characteristics. Experimental results show that the cumulative settlement at the final loading stage decreases as the relative density increases and the variation of the void ratio decreases. As a result of analyzing the settlement rate of long-term creep of sand, creep settlement of 4.7~11.0% occurred depending on relative density with respect to total settlement. The creep parameter, Beta, of Schmertmann et al. (1978) was estimated to be 0.17~0.40 (average 0.21), and it tended to converge to a certain value when the load step becomes more than a certain level. It was found that there is no significant difference in the creep parameter depending on the layer thickness, and it was confirmed that the creep parameter could be applied regardless of the field layer thickness.

본 연구에서는 남해안 모래의 장기 크리프 침하 특성을 평가하고자 상대밀도별로 표준압밀시험을 수행하였다. 실험 결과 최종 하중 단계에서의 누적 침하량은 상대밀도가 증가할수록 감소하였고, 간극비의 변화량도 감소하였다. 모래의 장기 크리프 침하비율을 분석한 결과, 전체 침하량에 대해서 상대밀도에 따라 4.7~11.0%의 크리프 침하가 발생하였다. 또한, Schmertmann et al. (1978)의 크리프 계수, Beta는 0.17~0.40(평균 0.21)로 평가되었고, 일정 하중단계 이상이 되면 일정한 값으로 수렴하는 경향을 보였다. 층두께에 따른 크리프 계수가 큰 차이가 없는 것으로 평가되어 실제 현장 층두께와 무관하게 크리프 계수를 적용할 수 있는 것으로 확인되었다.

Keywords

References

  1. Bong, T. H., Son, Y. H., Noh, S. G. and Park, J. S. (2012), Comparison study of undrained creep characteristics and creep model of silty sand, Journal of Korean Society of Agricultural Engineers, Vol. 54, No. 1, pp. 19-26 (In Korean). https://doi.org/10.5389/KSAE.2012.54.1.019
  2. Hooke, R. (1678), Lectures de Potentia Restitutiva, Or, Of Spring. Explaining the Power of Springing Bodies, London.
  3. Mitchell, J. K. and Soga, K. (2005), Fundamentals of Soil Behavior, 3rd Edition, John Wiley & Sons, Inc.
  4. Nam, J. M., Joh, S. H. and Kim, T. H. (2007), Compressive characteristics of sand in Jeju coastal area, Jounal of Korean Geotechnical Society, Vol. 23, No. 6, pp. 103-114 (In Korean).
  5. Nonveiller, E. (1963), Settlement of a grain silo on fine sand, European Conference on Soil Mechanics and Foundation Engineering, Wiesbaden, Proceedins, Vol. 1, pp. 285-294.
  6. Schmertmann, J. H., Hartman, J. P. and Brown, P. R. (1978), Improved strain influence factor diagrams, Journal of the Geotechnical Engineering Division, ASCE, Vol. 104, No. 8, pp. 1131-1135.
  7. Singh, A. and Mitchell, J. K. (1968), General stress strain-time function for soils, Journal of Soil Mechanics & Foundations Division, ASCE 94(1): 21-46.
  8. Timoshenko. (1951), Theory of Elasticity, McGraw-Hill. New York.