• Title/Summary/Keyword: sampling-based algorithms

Search Result 154, Processing Time 0.026 seconds

An Algorithm for Determining Double Rectifying Inspection Plans (선별형 2회 샘플링 검사방식의 최적설계를 위한 알고리즘 개발)

  • Kang, Bo-Chul;Cho, Jai-Rip
    • Journal of Korean Society for Quality Management
    • /
    • v.24 no.4
    • /
    • pp.207-223
    • /
    • 1996
  • These days, customers have attached great importance to the function of product liability and quality assurance. In Korea, the single rectifying sampling inspection for attribute (KS A 3105) has been used. But this inspection plan given by tables (KS A 3105) has some defects. There are limitations in the range of applications and irrationality of approximate probability and the double rectifying sampling inspection is not mentioned. Moreover, ATI (average total inspection) does not reflect sampling costs and the loss of nonconforming item. Therefore, the objectives of this study is to develope new algorithms and computer program that provide the optimal sampling inspection plan based on minimum linear costs (single & double inspection plan). The result of this study revealed that the new algorithm is less than KS A 3105 in ATI and basically, double inspection plan is more economical. Also it comes over restrictions in KS A 3105. So, it is definite that the optimal solution can be obtained considering cost factors in manufacturing and sampling process, and costs can be saved in the long term.

  • PDF

Optimal Design of Discrete Time Preview Controllers for Semi-Active and Active Suspension systems

  • Youn, Il-Joong
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.8
    • /
    • pp.807-815
    • /
    • 2000
  • In this paper, modified discrete time preview control algorithms for active and semi-active suspension systems are derived based on a simple mathematical 4 DOF half-car model. The discrete time preview control laws for ride comfort are employed in the simulation. The algorithms for MIMO system contain control strategies reacting against body forces that occur at cornering, accelerating, braking, or under payload, in addition to road disturbances. Matlab simulation results for the discrete time case are compared with those for the continuous time case and the appropriateness of the discrete time algorithms are verified by the of simulation results. Passive, active, and semi-active system responses to a sinusoidal input and an asphalt road input are analysed and evaluated. The simulation results show the extent of performance degradation due to numerical errors related to the length of the sampling time and time delay.

  • PDF

Kinodynamic Motion Planning with Artificial Wavefront Propagation

  • Ogay, Dmitriy;Kim, Eun-Gyung
    • Journal of information and communication convergence engineering
    • /
    • v.11 no.4
    • /
    • pp.274-281
    • /
    • 2013
  • In this study, we consider the challenges in motion planning for automated driving systems. Most of the existing online motion-planning algorithms, which take dynamics into account, find it difficult to operate in an environment with narrow passages. Some of the existing algorithms overcome this by offline preprocessing if environment is known. In this work an online algorithm for motion planning with dynamics in an unknown cluttered environment with narrow passages is presented. It utilizes an idea of hybrid planning with sampling- and discretization-based motion planners, which run simultaneously in a full configuration space and a derived reduced space. The proposed algorithm has been implemented and tested with a real autonomous vehicle. It provides significant improvements in computational time performance over basic planning algorithms and allows the generation of smoother paths than those generated by the recently developed hybrid motion planners.

Comparison of Univariate Kriging Algorithms for GIS-based Thematic Mapping with Ground Survey Data (현장 조사 자료를 이용한 GIS 기반 주제도 작성을 위한 단변량 크리깅 기법의 비교)

  • Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.4
    • /
    • pp.321-338
    • /
    • 2009
  • The objective of this paper is to compare spatial prediction capabilities of univariate kriging algorithms for generating GIS-based thematic maps from ground survey data with asymmetric distributions. Four univariate kriging algorithms including traditional ordinary kriging, three non-linear transform-based kriging algorithms such as log-normal kriging, multi-Gaussian kriging and indicator kriging are applied for spatial interpolation of geochemical As and Pb elements. Cross validation based on a leave-one-out approach is applied and then prediction errors are computed. The impact of the sampling density of the ground survey data on the prediction errors are also investigated. Through the case study, indicator kriging showed the smallest prediction errors and superior prediction capabilities of very low and very high values. Other non-linear transform based kriging algorithms yielded better prediction capabilities than traditional ordinary kriging. Log-normal kriging which has been widely applied, however, produced biased estimation results (overall, overestimation). It is expected that such quantitative comparison results would be effectively used for the selection of an optimal kriging algorithm for spatial interpolation of ground survey data with asymmetric distributions.

Digitally Current Controlled DC-DC Switching Converters Using an Adjacent Cycle Sampling Strategy

  • Wei, Tingcun;Wang, Yulin;Li, Feng;Chen, Nan;Wang, Jia
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.227-237
    • /
    • 2016
  • A novel digital current control strategy for digitally controlled DC-DC switching converters, referred to as Adjacent Cycle Sampling (ACS), is proposed in this paper. For the ACS current control strategy, the available time interval from sampling the current to updating the duty ratio, is approximately one switching cycle. In addition, it is independent of the duty ratio. As a result, the contradiction between the processing speed of the hardware and the transient response speed can be effectively relaxed by using the ACS current control strategy. For digitally controlled buck DC-DC switching converters with trailing-edge modulation, digital current control algorithms with the ACS control strategy are derived for three different control objectives. These objectives are the valley, average, and peak inductor currents. In addition, the sub-harmonic oscillations of the above current control algorithms are analyzed and eliminated by using the digital slope compensation (DSC) method. Experimental results based on a FPGA are given, which verify the theoretical analysis results very well. It can be concluded that the ACS control has a faster transient response speed than the time delay control, and that its requirements for hardware processing speed can be reduced when compared with the deadbeat control. Therefore, it promises to be one of the key technologies for high-frequency DC-DC switching converters.

Target Motion Analysis with the IMMPDAF for Sonar Resource Management (IMMPDAF를 Sonar Resource Management에 적용한 기동표적분석 연구)

  • 임영택;송택렬
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.5
    • /
    • pp.331-337
    • /
    • 2004
  • Target motion analysis with a sonar system in general uses a regular sampling time and thus obtains regular target information regardless of the target maneuver status. This often results in overconsumption of the limited sonar resources. We propose two methods of the IMM(interacting Multiple Model) PDAF algorithm for sonar resource management to improve target motion analysis performance and to save sonar resources in this paper. In the first method, two different process noise covariance which are used as mode sets are combined based on probability. In the second method, resource time which are processed from two mode sets is calculated based on probability and then considered as update time at next step. Performance of the proposed algorithms are compared with the other algorithms by a series of Monte Carlo simulation.

New Optimization Algorithm for Data Clustering (최적화에 기반 한 데이터 클러스터링 알고리즘)

  • Kim, Ju-Mi
    • Journal of Intelligence and Information Systems
    • /
    • v.13 no.3
    • /
    • pp.31-45
    • /
    • 2007
  • Large data handling is one of critical issues that the data mining community faces. This is particularly true for computationally intense tasks such as data clustering. Random sampling of instances is one possible means of achieving large data handling, but a pervasive problem with this approach is how to deal with the noise in the evaluation of the learning algorithm. This paper develops a new optimization based clustering approach using an algorithm specifically designed for noisy performance. Numerical results show this algorithm better than the other algorithms such as PAM and CLARA. Also with this algorithm substantial benefits can be achieved in terms of computational time without sacrificing solution quality using partial data.

  • PDF

Tunable Q-factor 2-D Discrete Wavelet Transformation Filter Design And Performance Analysis (Q인자 조절 가능 2차원 이산 웨이브렛 변환 필터의 설계와 성능분석)

  • Shin, Jonghong
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.11 no.1
    • /
    • pp.171-182
    • /
    • 2015
  • The general wavelet transform has profitable property in non-stationary signal analysis specially. The tunable Q-factor wavelet transform is a fully-discrete wavelet transform for which the Q-factor Q and the asymptotic redundancy r, of the transform are easily and independently specified. In particular, the specified parameters Q and r can be real-valued. Therefore, by tuning Q, the oscillatory behavior of the wavelet can be chosen to match the oscillatory behavior of the signal of interest, so as to enhance the sparsity of a sparse signal representation. The TQWT is well suited to fast algorithms for sparsity-based inverse problems because it is a Parseval frame, easily invertible, and can be efficiently implemented. The transform is based on a real valued scaling factor and is implemented using a perfect reconstruction over-sampled filter bank with real-valued sampling factors. The transform is parameterized by its Q-factor and its over-sampling rate, with modest over-sampling rates being sufficient for the analysis/synthesis functions to be well localized. This paper describes filter design of 2D discrete-time wavelet transform for which the Q-factor is easily specified. With the advantage of this transform, perfect reconstruction filter design and implementation for performance improvement are focused in this paper. Hence, the 2D transform can be tuned according to the oscillatory behavior of the image signal to which it is applied. Therefore, application for performance improvement in multimedia communication field was evaluated.

A Study on Efficient Signing Methods and Optimal Parameters Proposal for SeaSign Implementation (SeaSign에 대한 효율적인 서명 방법 및 최적 파라미터 제안 연구)

  • Suhri Kim
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.34 no.2
    • /
    • pp.167-177
    • /
    • 2024
  • This paper proposes optimization techniques for SeaSign, an isogeny-based digital signature algorithm. SeaSign combines class group actions of CSIDH with the Fiat-Shamir with abort. While CSIDH-based algorithms have regained attention due to polynomial time attacks for SIDH-based algorithms, SeaSiogn has not undergone significat optimization because of its inefficiency. In this paper, an efficient signing method for SeaSign is proposed. The proposed signing method is simple yet powerful, achived by repositioning the rejection sampling within the algorithm. Additionally, this paper presnts parameters that can provide optimal performance for the proposed algorithm. As a result, by using the original parameters of SeaSign, the proposed method is three times faster than the original SeaSign. Additonally, combining the newly suggested parameters with the signing method proposed in this paper yields a performance that is 290 times faster than the original SeaSign and 7.47 times faster than the method proposed by Decru et al.

A Quantitative Evaluation and Comparison of Harmonic Elimination Algorithms Based on Moving Average Filter and Delayed Signal Cancellation in Phase Synchronization Applications

  • Xiong, Liansong;Zhuo, Fang;Wang, Feng;Liu, Xiaokang;Zhu, Minghua;Yi, Hao
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.717-730
    • /
    • 2016
  • The harmonic components of grid voltage result in oscillations of the calculated phase obtained via phase synchronization. This affects the security and stability of grid-connected converters. Moving average filter, delayed signal cancellation and their related harmonic elimination algorithms are major methods for such issues. However, all of the existing methods have their limitations in dealing with multiple harmonics issues. Furthermore, few studies have focused on a comparison and evaluation of these algorithms to achieve optimal algorithm selections in specific applications. In this paper, these algorithms are quantitatively analyzed based on the derived mathematical models. Moreover, an enhanced moving average filter and enhanced delayed signal cancellation algorithms, which are applicable for eliminating a group of selective harmonics with only one calculation block, are proposed. On this basis, both a comprehensive comparison and a quantitative evaluation of all of the aforementioned algorithms are made from several aspects, including response speed, required data storage size, sensitivity to sampling frequency, and elimination of random noise and harmonics. With the conclusions derived in this paper, better overall performance in terms of harmonic elimination can be achieved. In addition, experimental results under different conditions demonstrate the validity of this study.