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I. INTRODUCTION 

 

Recently, there has been considerable research in the area 

of motion planning, which is an essential part of almost all 

robotic systems. Its area of application goes beyond robotics 

into the areas of computational biology, computer animation, 

and economics. 

Further, in the past few years, the development of 

automated driving systems has been a source of many 

challenges for motion planning. Many approaches to solving 

the problem have been developed and successfully imple-

mented. 

The initial motivation for this work was to develop a 

motion planning algorithm that could drive an autonomous 

vehicle in an unknown cluttered environment under differ-

ential constraints. The development was a part of pre-

parations for Hyundai-Kia Autonomous Vehicle Compe-

tition 2012, held in Korea. 

Among the recently developed motion planning methods 

for autonomous vehicles, several types of planning appro-

aches may be distinguished. The most widely used ones are 

space discretization-based and sampling-based methods. 

The former methods work well in cluttered environments 

but have trouble in generating smooth trajectories and 

taking kinodynamic constraints into account, and vice versa. 

The proposed method is based on the idea of simul-

taneously running two different types of motion planning 

algorithms, which interact with each other and benefit from 

each other’s advantages. This approach was studied in [1, 2] 

and applied to offline motion planning with dynamics in a 
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Abstract 

In this study, we consider the challenges in motion planning for automated driving systems. Most of the existing online 

motion-planning algorithms, which take dynamics into account, find it difficult to operate in an environment with narrow 

passages. Some of the existing algorithms overcome this by offline preprocessing if environment is known. In this work an 

online algorithm for motion planning with dynamics in an unknown cluttered environment with narrow passages is presented. 

It utilizes an idea of hybrid planning with sampling- and discretization-based motion planners, which run simultaneously in a 

full configuration space and a derived reduced space. The proposed algorithm has been implemented and tested with a real 

autonomous vehicle. It provides significant improvements in computational time performance over basic planning algorithms 

and allows the generation of smoother paths than those generated by the recently developed hybrid motion planners. 
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cluttered environment. In these works, a graph search 

algorithm runs in a discretized workspace and guides the 

extension of a tree in a continuous configuration space. The 

progress of tree extension is then estimated and is utilized to 

update the extension heuristics of the higher-level path 

planner.  

In our work, we have applied a similar strategy. However, 

instead of running a discretization-based algorithm in a 

projection space, we introduced a simple method that 

propagates an artificial wavefront, which helped us to 

resolve some issues with the resolution of a projection space 

discretization. It allowed us to run the planning algorithm in 

real time. Simultaneously, we noticed that the generated 

wavefront may be utilized to construct a potential field with 

no local minima, which converges in the initial point. This 

field may later be utilized to produce a navigation function 

[3]. However, navigation function for this particular pro-

blem is not studied in this paper. 

Navigation functions open more opportunities for the 

feedback motion planning, where a separate pathfollowing 

controller is not required. Of greater significance is the fact 

that in conjunction with reactive planning algorithms, these 

functions allow the creation of planners that can cope with 

unpredicted dynamic obstacles in unknown environments. 

Works on Euclidean shortest paths include [4, 5]. Unlike 

methods based on interpolation, the proposed wavefront 

propagation method is based on random sampling, performs 

a feasibility check not only on the obstacle presence but also 

on the kinodynamic constraints of the robot, and easily 

integrates with a sampling-based motion planner. 

 

 

II. RELATED WORKS 

 

One of the common approaches in the area of motion 

planning is to discretize the configuration space and then 

run a graph-search algorithm like A* or Dijkstra’s algorithm. 

This approach was applied to solve the problem of auto-

nomous vehicle driving in [6, 7]. 

Some other works (rapidly exploring random tree [RRT] 

and probabilistic roadmap [PRM]) [8, 9] introduce app-

roaches for motion planning in continuous space with 

kinodynamic constraints. Unlike methods with space 

discretization, these methods suffer less from the so-called 

curse of dimensionality, when the algorithm complexity 

increases exponentially with the number of dimensions. 

Further, these methods can generate smooth trajectories, 

which do not require additional smoothing or optimization 

[6]. However, depending on the environment (presence of 

narrow paths), these methods may run for an indefinitely 

long time. To overcome these issues, many strategies for 

sampling biasing have been introduced [10, 11]. 

 

 

III. METHOD DESCRIPTION 

 

The proposed method combines a sampling-based motion 

planning method and an artificial wavefront propagation 

method (Fig. 1). The sampling-based algorithm is run in a 

full configuration space 		� , and an artificial wavefront 

propagation method is run in the projection space �′ = �(�), 

where �() denotes a transform, which may be identity. We 

will refer to our method as overlapping disks expansion 

(ODEx), which reflects how the wavefront is propagated. 

A sampling-based planner is a type of rapidly exploring 

dense tree (RDT) algorithm. It manages the kinodynamic 

constraints check and the obstacle collision checks by 

means of a simulation. The sampling is biased by an 

artificial wavefront, which propagates in a projection space. 

After the tree is extended to the configurations sampled at 

the current wavefront, the progress of the propagation is 

analyzed, and the center points for the construction of the 

next wavefront are determined. 

 

A. Wavefront 
 

We consider the wavefront as a curve or a set of curves in 

a two-dimensional space or a surface or set of surfaces in a 

higher-dimensional space. 

To describe the wavefront construction, let us introduce 

two variables �, which serves as an analog of wavelength, 

and � ∈ N, which denotes the ordinal number of a wave-

front. Let the wavefront originate from a center point ��,� 

and propagate in all directions at equal speed. It will form a 

circle �� with radius	�, enclosing an open set 	�	(Fig. 1). 

We then utilize an idea from Huygens principle that every 

point where the wave has reached becomes a source of 

secondary waves. However, following the original Huygens 

principle would imply an infinite number of points. There-

 

Fig. 1. Block diagram of the proposed planning algorithm. 
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fore, in our case, we limit the number of points. Let us now 

sample several points ��,� ∈ 0� ∈ 	 ��. See Fig. 2(b). 

Then, we construct overlapping circles ��,�  with the 

centers in ��,�. The circle segments, which are not over-

lapped by any open disks 	�,�, form a new wave front 
�. 

See Fig. 2(c). 

At the next step, new center points ���� are sampled 

from 
�, and the process iterates. 

 

																		
� = ⋃(� ∈ ��,�)\⋃(	�,�)∀, � < �	.													(1) 

 

Such a definition of a wavefront gives us several 

advantages: 

� Even if just one center point is sampled for the 

construction of the next wavefront, the wavefront may 

still be constructed. 

� Normals to the wavefront point to the corresponding 

center points and thus to the previous wavefront, con-

verging to the point of the origin. 

� Points on the wavefront may be sampled with a simple 

algorithm, described below, even for high-dimensional 

spaces. 

 

B. Wavefront Sampling Algorithm 
 

One of the issues that arise when working with curves or 

surfaces is how to represent them. A helpful feature of the 

proposed wavefront propagation method is that a wavefront 

is defined only by a set of center points �. Since in the 

proposed method, we utilize wavefronts to sample candidates 

for the sampling-based motion planner. Further, a sufficient 

representation implies an ability to sample candidate states 

on the wavefront. 

The sampling function is shown in Algorithm 1. First, it 

samples random points on all circles and then, filters those, 

which do not overlap any of the open disks. The function 

�������(�,�) is a nearest neighbor search, where �	denotes 

an input set to search in, and � represents the point to 

search the nearest neighbor for. It may be efficiently 

implemented with k-d trees. 

 

C. Dense Sampling 
 

For the completeness of the sampling-based motion 

planner, it is important for the sampled sequence to be dense. 

Let us consider an approach that makes the proposed 

artificial wavefront a dense sequence. 

There are two parameters that affect wavefront con-

struction: �, which denotes the radius of the elementary 

circles and �, which represents the ordinal number of the 

wavefront. Let us consider a sequence � = 0,1,2. . ∈ (�) 

and then, construct a sequence of wavefronts such that 

�	 = 2
��, � → ∞		and � → ∞. 

 

Theorem 1. A sequence of wavefronts 
�,
�, …
� is 

dense in the area, covered by the set of all disks 	 ∈ �. 

Proof. The distance from any point covered by a disk 	 

to the corresponding center point �is less than �. We may 

choose a sufficiently large �  so that 	2
�� < � , where 

�	denotes an arbitrarily small value. 
 

Theorem 2. As 	� → ∞ , �  overlaps any connected 

subset � ∈ �′ of a configuration space. 

Proof. As long as 
� exists, there is a non-zero pro-

bability that any point � ∈ 
�  is selected as a center 

point		�. The new disk 		is then may be constructed around 

�	and overlap an additional subset of � ∈ � . Thus, the 

process of expansion does not stop unless 
� exists. 

As the wavefront is the boundary of �, the growth will 

continue unless �		is overlapped by �. 
 

Theorem 3. As � → ∞	and 	� → ∞ , the sequence of 

wavefronts becomes dense in configuration space	�. 

Proof. As it is seen from the previous theorem, � may 

cover an arbitrarily large � ∈ �	and the sequence of 

wavefronts is dense in �. 

 

 
 

 

Fig. 2. Wavefront is propagated with overlapping disk expansion. (a)

The first propagation. (b) Center points for the next propagation are
selected. (c) Overlapping disks are constructed.  
 
 

(c) 

(a) (b) 
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D. Dense Sampling 
 

In the proposed method, a sampling-based planner runs 

synchronously in a full configuration space � together with 

the wavefront propagating planner, running in a projection 

space		�′. Further, it serves several goals: 

� generates a plan for execution; 

� ensures the feasibility of paths by means of constraints 

and obstacle collisions checks; and 

� provides the means to simulate the propagation of the 

system to the next wavefront. 

 

The sampling motion planner is based on a RDT (also 

known as RRT) [2]. An important feature of the RRT 

planner is its probabilistic completeness in the case of a 

dense sampling sequence. It uses a tree to represent a set of 

generated paths, where nodes correspond to configurations, 

and edges correspond to the feasible paths between 

configurations. The tree is iteratively extended towards 

sampled configurations unless the target or a certain 

limiting condition is met. In the proposed method, can-

didate configurations are sampled on the wavefronts, as 

shown in Fig. 3. 

Let the tree be denoted as �(�,�). We initialize it with a 

starting configuration ���� . Then, extend the tree to the 

nodes, sampled at wavefronts, as shown as Fig. 3(a). To be 

more precise, candidate configurations ����� are sampled 

in the configuration space � so that �(�����) ∈ 
, where 

� denotes the transform from the configuration space to 

the projection space and 
 represents the current wavefront. 

The tree extension procedure is shown in Algorithm 2. It 

is similar to that of RRTs, except the random sampling part. 

First, a point ����� is sampled from a wavefront 
 ∈ �′, 

and then, a candidate configuration is randomly sampled 

from the preimage of ����� . Moreover, sampleRandom() 

generates random samples. It should be dense in 	�
�(), in 

order for sampled configurations to be dense in		�. Dense 

sampling in �  is necessary to achieve the probabilistic 

completeness. 

After a candidate is sampled, the nearest configuration in 

the tree is selected. Then, the algorithm attempts to connect 

the closest configuration to the candidate configuration with 

a valid collision-free trajectory by means of simulation. If 

kinodynamic constraints are maintained (Fig. 3(a)) and the 

paths are obstacle free (Fig. 3(b)), then the candidate state 

and the linking path are added to the tree. 

Propagation is performed in stages, wavefront by wave-

front, and at every stage, some limited number of iterations 

is performed. For the proposed system, we determined this 

parameter experimentally by choosing between the smoo-

thness of the path and the available computational resources. 

After each stage, configurations that were successfully 

added may be considered as the representatives of the 

feasible segments of the current wavefront. This set of 

configurations is then analyzed to determine the shape of the 

next wavefront. 

 

E. Stochastic Analysis of Expansion Progress 
 

When new candidate points are sampled at a new 

wavefront, which parts of the new wave front are feasible 

and which ones are not is not known. The complete solution 

to determine, which wavefront segments are feasible, may 

Fig. 3. (a) New candidate configurations are sampled at the wave-front;

the planning tree is then extended to the sampled candidates (denoted
with filled dots). (b) Configurations that are not feasible because of the
presence of obstacles or differential constraints are ignored (denoted with
unfilled dots).  
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not exist because obstacles in the considered space may 

have various shapes. From the other side, the tree 	�, of the 

sampling-based planner, extends only to feasible configu-

reations. Therefore, a tree extension may be considered a 

tool for the stochastic estimation of the feasible segments of 

a wavefront.  

From there, we can pick the center points ��,� to con-

struct the next wavefront more efficiently. 

Let us propose some variable  ∈ R  and a mapping 


 ∈ �( ), which maps   onto a wavefront. Then, we may 

introduce a probability distribution function �( ), which 

would determine the probability that a given wavefront 

point is feasible, as shown in Fig. 4. If we could estimate 

	�( ), then we would know which parts of a wavefront are 

better for a further extension. 

When we apply a tree extension, we may notice that �( ) 

may have several peaks and valleys between them. This 

happens because obstacles make a wavefront discontinuous. 

Let us consider a set of functions gi	( ), with single high 

peaks; therefore, �!ρ" = ∑��gi	( ). Then, we may use E(gi) 

as center points �� for the next wavefront expansion. 

In order to determine g( ), we split a set of propagated 

configurations into clusters. We utilize density clustering to 

determine continuous segments, as shown in Fig. 4(a) and 

(b). Then, we split large clusters into smaller ones, and 

hence, g( ) has a narrow peak. Then, we calculate the 

mean of each cluster and use it as the expectation of g( ). 

Finally, we use it as a center point ��,� to construct the next 

wavefront. 

Algorithm 3 shows how propagated configurations are 

aggregated. The function densityClustering() splits the input 

set into the clusters of the nearest neighbors. The function 

split() creates subclusters in such a way that the distance 

between the furthest points in each cluster is less than 2�. 

Any suitable clustering algorithms may be utilized for these 

purposes. 

Algorithm 4 shows the main routine of the proposed 

method. The algorithm works by consecutively propagating 

a wavefront. It gradually increases the resolution to achieve 

the sampling density and thus the planner completeness. It 

should be noted that the tree �(�,�) remains the same as 

the resolution increases. The parameters $, which denotes 

the resolution limit, % , which represents the number of 

wavefronts, and �, which refers to the number of candidate 

samples per propagation of a wavefront, are determined 

depending on a particular task and the computational 

resources. 

 

 

IV. EXPERIMENTS 

 

The initial motivation for the development of a motion 

planner was participation in a national autonomous vehicles 

competition held in Korea. We implemented a multi-

threaded version of our algorithm and integrated it into an 

autonomous vehicle. We then performed several tests in a 

simulated environment in order to compare our method to 

other related motion planning algorithms, and to investigate 

the wavefront behavior in a variety of environments. We 

also tested our motion planner on an autonomous vehicle, 

driving it through obstacle patterns difficult for a sampling-

based planner. 

sss  

(a) 

 

 

(b)
 

Fig. 4. Successfully propagated configurations form clusters cl. 1, cl. 2, 

cl. 3, and cl. 4. (a) Successfully extended configurations are gathered in 
clusters. (b) Probability to reach a point at a wavefront. 
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A. Simulation 

 

To estimate the performance of the developed method, we 

ran a simulation in different types of environments: in a 

narrow labyrinth, with scattered obstacles, and with no 

obstacles (Fig. 5). We ran each algorithm ten times on a 

laptop with quad-core CPU and measured the computational 

time. Algorithms were made to run in parallel, with shared 

memory. 

We compared our approach to a modified RRT algorithm, 

because it was already tested on a real autonomous vehicle, 

and to an algorithm based on Kinodynamic Planning by 

Interior-Exterior Cell Exploration (KPIECE) algorithm, 

because our approach is similar to the idea of combining 

two different planning algorithms.  

To generate a sufficiently smooth path, we applied an 

approach, which was utilized in RRT* [12] and included 

cost-to-go into the distance for the nearest-neighbor search. 

Optimization was performed on time and lateral and 

longitudinal accelerations. Hence, we did not compare our 

results to the original KPIECE [2] or SyClOP [1] planners, 

as these planners utilize a forward dynamics simulation, 

lack the nearest-neighbor search, and have limited capability 

of increasing the optimality. Nearoptimal paths are important 

for driving at relatively high speeds. Although we do not 

claim optimality convergence in the proposed method, the 

main goal was to create trajectories that were sufficiently 

smooth for high-speed driving. 

We implemented a nearest-neighbor search-based al-

gorithm and applied a sampling strategy similar to KPIECE. 

We ran a discretization-based planner in the projection space 

and biased the sampling to the boundary region between the 

explored and the unexplored zones. For the experiments, we 

labeled this method as nn-KPIECE. 

The results are presented in Table 1: average, minimum, 

and maximum algorithm run times were recorded. From 

these results, it can be concluded that ODEx performs 

considerably better on narrow paths, approximately similar 

to RRT in an environment with scattered obstacles, and 

RRT performs better in an open environment. The other 

advantage of ODEx is that the computational time is 

considerably less random in comparison to RRT. In com-

parison to nn-KPIECE, our algorithm performed slightly 

 

Table 1. Comparison of run time in different environments 

Map RRT (ms) nn-KPIECE (ms) ODEx (ms)

Labyrinth    

Avg. 22825 1355 771 

Min–max 7000–37000 978–1834 427–1118 

Rounds    

Avg. 1519 1118 508 

Min–max 710–2751 724–3581 316–1159 

No obstacles    

Avg.  119   263   227 

Min–max  38–185  213–295   197–257 

RRT: rapidly exploring random tree, nn-KPIECE: nearest-neighbor 

Kinodynamic Planning by Interior-Exterior Cell Exploration, ODEx: 

overlapping disks expansion. 

  
(a)                       (b) 

 

 
(c) 

Fig. 5. Simulation was performed in three different environments: (a)

labyrinth, (b) randomly scattered round obstacles, and (c) free space. 

 

(a)
 

 

(b)
 

Fig. 6. Experiments with a real autonomous vehicle. (a) Closely placed

road cones. (b) Snapshot of running motion planner. Velocity profile (red)
and curvature of the path (blue) is depicted in the right bottom corner. 
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faster but in the same order. The performances of KPIECE 

and SyCLOP are influenced by the cell size in dis-

cretization-based high-level planners. This is one of the 

disadvantages of these methods, and probably, the cell size 

was not optimal during the experiments. 

 

B. Real Environment Test 
 

We performed various tests in a real environment. One 

of the most challenging tests for an autonomous vehicle is 

navigation in narrow passages, which are difficult for 

sampling-based motion planners. In the test, we placed road 

cones in a grid pattern; the distance between the cones was 

approximately 4–6 m in Fig. 6(a). Our planner generated a 

trajectory in real time from the map updates, which were 

generated with the readings from laser scanners in Fig. 6(b). 

The graphs of curvature and speed profiles are also shown. 

The speed was not high, as we applied the speed-dependent 

width of a car for the collision checker in order to compensate 

for the inaccuracy of the motion controller at high speeds. The 

initial propagation step �
�
 was chosen to be 6 m. 

On relatively wide paths, we tested the vehicle by driving 

at speeds of more than 60 km/h. Planning was carried 

out considering constraints on lateral and longitudinal 

accelerations, minimum turn radius, and maximum all-

owed speed. Dynamics with a side slip was not con-

sidered. Depending on the difficulty of the obstacles, the 

planning time varied from 90 to 600 ms. 

 

 

V. CONCLUSIONS 

 

During preparations for a national autonomous vehicles 

competition, we developed a new motion planning approach 

and implemented it in a real system. We tested the system in 

a real environment at speeds more than 60 km/h. 

The proposed planner solves a combination of planning 

challenges, including online planning, multiple dimensions, 

presence of narrow paths, kinodynamic constraints, and 

unknown environment. 

The efficiency of the proposed algorithm was shown 

experimentally by comparing the performance of the pro-

posed algorithm to that of other planning algorithms in a 

simulated environment. 
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