• Title/Summary/Keyword: salt tolerant

Search Result 202, Processing Time 0.026 seconds

한국 남해안방풍림 자생수종의 내염성 및 내조성 수종 선발 (Soil Salinity and Salt Spray Drift Tolerance of Native Trees on the Coastal Windbreaks in the South-Sea, Korea)

  • 김도균
    • 한국환경생태학회지
    • /
    • 제24권1호
    • /
    • pp.14-25
    • /
    • 2010
  • 본 연구는 염해지역의 식재수종 선발에 대한 기초자료로 활용하고자 한국 남해안 방풍림 자생수목의 토양염분에 대한 내성과 염분비산 영향을 미치는 지대별 토양염분도와 출현수종을 조사 분석하였다. 조사지의 토양염분 $EC_{1:5}$는 전체 평균 $0.18dSm^-1$이었고, 최저 $0.05dSm^{-1}$, 최고 $0.58dSm^{-1}$이었다. 토양염분($EC_{1:5}$)은 I 지대를 제외하고는 해안 정선으로 부터 내륙으로 갈수록 낮았으며, II 지대>llI지대>I 지대>IV지대 순으로 각각 $EC_{1:5}$ $0.22dSm^{-1}$ $0.22dSm^{-1}$ $0.19dSm^{-1}$ $0.13dSm^{-1}$이었다. 출현한 자생식물은 45과 74속 9변종 100종 총 110분류군이었다. 토양염분이 가장 높은 단계인 $EC_{1:5}$ $0.50dSm^{-1}$를 초과하는 곳에 출현한 식물은 담쟁이덩굴과 안동이였으며, 그 다음으로 $EC_{1:5}$ $0.41{\sim}dSm^{-1}$까지 자생하는 식물은 꾸지뽕나무, 멍석딸기, 산초나무, 송악, 아까시나무, 졸참나무, 좀작살나무 퉁이었다. 전제 지대에 출현하는 수종은 정과 새머루이었고, 내조성이 높은 순비기나무는 I 지대에만 출현하였다. 전체 지대에서 중요도가 가장 높온 수종은 느티나무, 팽나무, 모감주나무, 예덕나무, 마삭줄, 칡 등이었다. 이러한 수종은 조사지의 자생 수종들 중에서 다른 수종에 버하여 상대적으로 내조성이 강한 수종으로 판단되었다.

Phage Display Library를 이용한 Salt-Resistant Alpha-Helical 항균 펩타이드의 새로운 탐색방법 (A Novel Screening Strategy for Salt-resistant Alpha-helical Antimicrobial Peptides from a Phage Display Library)

  • 박주희;한옥경;이백락;김정현
    • 한국미생물·생명공학회지
    • /
    • 제35권4호
    • /
    • pp.278-284
    • /
    • 2007
  • 생체 염 농도에서도 항균활성을 유지할 수 있는 선형 ${\alpha}$-helical 항균 펩타이드를 M13 펩타이드 라이브러리로부터 탐색할 수 있는 새로운 방법을 개발하였다. M13의 pIII은 magainin 유도체인 MSI-344와 indolicidin과 융합된 상태에서도 파아지의 viability에 영향을 주지 않는 것으로 보아, MSI-344와 indolicidin의 대장균에 대한 독성을 중화할 수 있는 것으로 판단되며, 따라서 대장균에서 항균 펩타이드 라이브러리의 제조가 가능함을 증명하였다. 선형 항균 펩타이드의 보존된 부위를 바탕으로, 13개의 아미노산 잔기로 구성된 semi-combinatorial 항균 펩타이드 라이브러리를 M13를 이용하여 제조하였다. 제조된 파아지 라이브러리는 먼저 적혈구에 흡착시켜, 높은 용혈 역가를 가질 가능성이 있는 파아지를 제거한 후, 높은 염 농도에서 Pseudomonas aeruginosa와 Staphylococcus aureus에 흡착할 수 있는 파아지를 탐색하였다. 탐색된 펩타이드들은 염이 없는 조건에서는 비교적 낮은 항균 역가를 보였지만, P06와 S18 펩타이드의 경우, 생체 염 농도보다 높은 150 mM $Na^+$, 2 mM $Mg^{2+}$, 2 mM $Ca^{2+}$의 조건에서도 항균 역가가 영향을 받지 않았으며, 심각한 용혈 역가 또한 보이지 않았다. 본 연구에서 개발한 대상 세균에 대한 흡착능력을 이용한 탐색방법은 salt-tolerant antimicrobial peptide의 개발의 새로운 가능성을 제시하였다.

Substrate-Dependent Auxin Production by Rhizobium phaseoli Improves the Growth and Yield of Vigna radiata L. Under Salt Stress Conditions

  • Zahir, Z.A.;Shah, M. Kashif;Naveed, M.;Akhter, M. Javed
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권9호
    • /
    • pp.1288-1294
    • /
    • 2010
  • Rhizobium phaseoli strains were isolated from the mung bean (Vigna radiata L.) nodules, and the most salt tolerant and high auxin producing rhizobial isolate N20 was evaluated in the presence and absence of L-tryptophan (L-TRP) for improving the growth and yield of mung bean under saline conditions in a pot experiment. Mung bean seeds were inoculated with peat-based inoculum and NP fertilizers were applied at 30-60 kg/ha, respectively. Results revealed that imposition of salinity reduced the growth and yield of mung bean. On the contrary, the separate application of L-TRP and Rhizobium appeared to mitigate the adverse effects of salt stress. However, their combined application produced more pronounced effects and increased the plant height (28.2%), number of nodules per plant (71.4%), plant biomass (61.2%), grain yield (65.3%), and grain nitrogen concentration (22.4%) compared with untreated control. The growth promotion effect might be due to higher auxin production in the rhizosphere and improved mineral uptake that reduced the adverse effects of salinity. The results imply that supplementing Rhizobium inoculation with L-TRP could be a useful approach for improving the growth and yield of mung bean under salt stress conditions.

Effect of seawater on growth of four vegetable crops - Lettuce, leaf perilla, red pepper, cucumber -

  • Lee, Sang-Beom;Lee, M.H.;Lee, B.M.;Nam, H.S.;Kang, C.K.
    • 한국유기농업학회지
    • /
    • 제19권spc호
    • /
    • pp.222-224
    • /
    • 2011
  • The effects of seawater on growth of lettuce(Lactuca sativa L.), leaf perilla(Perilla frutescens var. japonica Hara), red pepper(Capsicum annuum L.) and cucumber(Cucumis sativus L.) seedlings were investigated in the glass greenhouse. These effects were studied on seedlings, and diluted seawater (1%, 5%, 10%, 20%, 50%, 100% v/v) was sprayed enough on leaves. The tested four vegetable crops have well grown up to 10% diluted seawater, but the tested vegetable crops were damaged from increasing salt levels. Of these, lettuce was provided salt-tolerant vegetable crop and red pepper was considered salt-sensitive vegetable crop. The salt tolerance of vegetable crops is different between crops and complicated because of additional detrimental effects caused by accumulated ions or specific ion toxicities in their leaves. These results show that agricultural use of seawater may be benefit crop cultivation in organic farming system as well as in conventional farming system.

Analysis of the chloroplast genome and SNP detection in a salt tolerant breeding line in Korean ginseng

  • Jo, Ick-Hyun;Bang, Kyong-Hwan;Hong, Chi Eun;Kim, Jang-Uk;Lee, Jung-Woo;Kim, Dong-Hwi;Hyun, Dong-Yun;Ryu, Hojin;Kim, Young-Chang
    • Journal of Plant Biotechnology
    • /
    • 제43권4호
    • /
    • pp.417-421
    • /
    • 2016
  • The complete chloroplast genome sequence of Panax ginseng breeding line 'G07006', showing higher salt tolerance, was confirmed by de novo assembly using whole genome next-generation sequences. The complete chloroplast (CP) genome size is 156,356 bp, including two inverted repeats (IRs) of 52,060 bp, separated by the large single-copy (LSC 86,174 bp) and the small single-copy (SSC 18,122 bp) regions. One hundred fourteen genes were annotated, including 80 protein-coding genes, 30 tRNA genes, and 4 rRNA genes. Among them, 18 sites were duplicated in the inverted repeat regions. By comparative analyses of the previously identified CP genome sequences of nine cultivars of P. ginseng and that of G07006, five useful SNPs were defined in this study. Since three of the five SNPs were cultivar-specific to Chunpoong and Sunhyang, they could be easily used for distinguishing from other ginseng accessions. However, on arranging SNPs according to their gene location, the G07006 genotype was 'GTGGA', which was distinct from other accessions. This complete chloroplast DNA sequence could be conducive to discrimination of the line G07006 (salt-tolerant) and further enhancement of the genetic improvement program for this important medicinal plant.

Characterization of Novel Salt-Tolerant Esterase Isolated from the Marine Bacterium Alteromonas sp. 39-G1

  • Won, Seok-Jae;Jeong, Han Byeol;Kim, Hyung-Kwoun
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권2호
    • /
    • pp.216-225
    • /
    • 2020
  • An esterase gene, estA1, was cloned from Alteromonas sp. 39-G1 isolated from the Beaufort Sea. The gene is composed of 1,140 nucleotides and codes for a 41,190 Da protein containing 379 amino acids. As a result of a BLAST search, the protein sequence of esterase EstA1 was found to be identical to Alteromonas sp. esterase (GenBank: PHS53692). As far as we know, no research on this enzyme has yet been conducted. Phylogenetic analysis showed that esterase EstA1 was a member of the bacterial lipolytic enzyme family IV (hormone sensitive lipases). Two deletion mutants (Δ20 and Δ54) of the esterase EstA1 were produced in Escherichia coli BL21 (DE3) cells with part of the N-terminal of the protein removed and His-tag attached to the C-terminal. These enzymes exhibited the highest activity toward p-nitrophenyl (pNP) acetate (C2) and had little or no activity towards pNP-esters with acyl chains longer than C6. Their optimum temperature and pH of the catalytic activity were 45℃ and pH 8.0, respectively. As the NaCl concentration increased, their enzyme activities continued to increase and the highest enzyme activities were measured in 5 M NaCl. These enzymes were found to be stable for up to 8 h in the concentration of 3-5 M NaCl. Moreover, they have been found to be stable for various metal ions, detergents and organic solvents. These salt-tolerant and chemical-resistant properties suggest that the enzyme esterase EstA1 is both academically and industrially useful.

A Novel Esterase from a Marine Metagenomic Library Exhibiting Salt Tolerance Ability

  • Fang, Zeming;Li, Jingjing;Wang, Quan;Fang, Wei;Peng, Hui;Zhang, Xuecheng;Xiao, Yazhong
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권6호
    • /
    • pp.771-780
    • /
    • 2014
  • A putative lipolytic enzyme gene, named as est9x, was obtained from a marine microbial metagenome of the South China Sea. Sequence analysis showed that Est9X shares lower than 27% sequence identities with the characterized lipolytic enzymes, but possesses a catalytic triad highly conserved in lipolytic enzymes of the ${\alpha}/{\beta}$ hydrolase superfamily. By phylogenetic tree construction, Est9X was grouped into a new lipase/esterase family. To understand Est9X protein in depth, it was recombinantly expressed, purified, and biochemically characterized. Within potential hydrolytic activities, only lipase/esterase activity was detected for Est9X, confirming its identity as a lipolytic enzyme. When using p-nitrophenol esters with varying lengths of fatty acid as substrates, Est9X exhibited the highest activity to the C2 substrate, indicating it is an esterase. The optimal activity of Est9X occurred at a temperature of $65^{\cric}C$, and Est9X was pretty stable below the optimum temperature. Distinguished from other salt-tolerant esterases, Est9X's activity was tolerant to and even promoted by as high as 4 M NaCl. Our results imply that Est9X is a unique esterase and could be a potential candidate for industrial application under extreme conditions.

Purification and Characterization of a Novel Salt-tolerant Protease Produced by Saccharomyces sp. B101 Isolated from Baker's Dough Yeast

  • Hwang, Joo-Yeon;Kim, Sang-Moo;Heo, Seok;Kim, Cheon-Jei;Lee, Chi-Ho;Lee, Si-Kyung
    • Food Science and Biotechnology
    • /
    • 제17권4호
    • /
    • pp.766-771
    • /
    • 2008
  • The proteolytic enzyme from Saccharomyces sp. B101 was purified to homogeneity by ammonium sulfate fractionation, ultrafiltration, diethyl aminoethyl (DEAE)-Sephadex A-50 ion-exchange chromatography, and Sephadex G-100 gel filtration chromatography from the culture supernatant of Saccharomyces sp. B101. The specific activity and the purification fold of the purified enzyme were 4,688.9 unit/mg and 18, respectively. The molecular weight of the purified enzyme was estimated to be 33 kDa by sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The optimum pH and temperature for the enzyme activity were pH 8.5 and $30^{\circ}C$, respectively. The enzyme activity was relatively stable in the pH range of 6.5-8.5 at below $35^{\circ}C$. The salt-tolerance and stability for the enzyme activity were relatively stable even at NaCl concentrations of 10 and 15%. The activity of enzyme was inhibited by $Ag^{2+}$ and $Fe^{2+}$, and activated by $Mn^{2+}$. In addition, the enzyme activity was potently inhibited by ethylenediaminetetraacetic acid (EDTA) and phenylmethyl sulfonylfluoride (PMSF). Based on these findings we concluded that the purified enzyme was a serine protease. Km and Vmax values for hammastein milk casein were 1.02 mg/mL and 278.38 unit/mL, respectively.

Nitric oxide modulates antioxidant defense and the methylglyoxal detoxification system and reduces salinity-induced damage of wheat seedlings

  • Hasanuzzaman, Mirza;Hossain, Mohammad Anwar;Fujita, Masayuki
    • Plant Biotechnology Reports
    • /
    • 제5권4호
    • /
    • pp.353-365
    • /
    • 2011
  • The present study investigates the possible regulatory role of exogenous nitric oxide (NO) in antioxidant defense and methylglyoxal (MG) detoxification systems of wheat seedlings exposed to salt stress (150 and 300 mM NaCl, 4 days). Seedlings were pre-treated for 24 h with 1 mM sodium nitroprusside, a NO donor, and then subjected to salt stress. The ascorbate (AsA) content decreased significantly with increased salt stress. The amount of reduced glutathione (GSH) and glutathione disulfide (GSSG) and the GSH/GSSG ratio increased with an increase in the level of salt stress. The glutathione S-transferase (GST) activity increased significantly with severe salt stress (300 mM). The ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), catalase (CAT) and glutathione peroxidase (GPX) activities did not show significant changes in response to salt stress. The glutathione reductase (GR), glyoxalase I (Gly I), and glyoxalase II (Gly II) activities decreased upon the imposition of salt stress, especially at 300 mM NaCl, with a concomitant increase in the $H_2O_2$ and lipid peroxidation levels. Exogenous NO pretreatment of the seedlings had little influence on the nonenzymatic and enzymatic components compared to the seedlings of the untreated control. Further investigation revealed that NO pre-treatment had a synergistic effect; that is, the pre-treatment increased the AsA and GSH content and the GSH/GSSG ratio, as well as the activities of MDHAR, DHAR, GR, GST, GPX, Gly I, and Gly II in most of the seedlings subjected to salt stress. These results suggest that the exogenous application of NO rendered the plants more tolerant to salinity-induced oxidative damage by enhancing their antioxidant defense and MG detoxification systems.

Corynebacterium glutamicum 균주 개량 및 발효 공정 최적화에 의한 L-lysine 생산성 증진 (Enhancement of L-lysine Productivity by Strain Improvement and Optimization of Fermentation Conditions in Corynebacterium glutamicum)

  • 서진미;현형환
    • KSBB Journal
    • /
    • 제21권2호
    • /
    • pp.79-84
    • /
    • 2006
  • 본 연구에서는 Corynebacterium glutamicum I 균주에 salt tolerance를 도입하여 L-lysine 생산량을 증가시키고자 하였다. I 균주를 이용하여 mutagenesis를 수행한 후 모균주가 생장하는 못하는 9%의 NaCl이 포함된 배지에서 빠르게 생장하는 C14-49-3-15-7-3-20 균주를 선별하였다. flask 배양으로 L-lysine 생산을 조사한 결과 모균주 I의 경우 L-lysine 농도가 53.3 g/L, 수율이 51.6%인 반면 변이주 C14-49-3-15-7-3-20의 경우에는 L-lysine 농도 61.2 g/L, 수율 61.0%로 나타났다. 그리고 5 L 발효조에서 유가식 배양법으로 배양하여 L-lysine 생산량을 조사하였다. 그 결과 모균주는 113.0 g/L의 L-lysine을 생산하였고 수율은 41.8%이었다. 하지만 변이주의 경우에는 $33^{\circ}C$로 유지하여 배양한 후 PCV가 7.5%가 되는 시점에 배양 온도를 $35^{\circ}C$로 올려주고 배양하였을 때 L-lysine 생산량이 130.6 g/L, 수율이 48.6%로 모균주보다 많은 양의 L-lysine을 생산하였다. L-lysine 생산과 균주의 생장에 대한 osmotic pressure의 영향을 조사하기 위해 변이주 C14-49-3-15-7-3-20을 고농도의 NaCl과 당이 포함되어 있는 배지에 각각 배양하여 균체 생장 및 L-lysine 생산량을 조사하였다. 그 결과 모균주는 균체 생장이 느리고 생산량도 낮은 반면 변이주 C14-49-3-15-7-3-20의 경우에는 균체 생장 정도가 높고 생산량도 모균주보다 높았다. 그리고 2%의 NaCl이 포함되어 있는 배지에 osmoprotectant 를 첨가하였을 경우 모균주는 균체 생장 및 L-lysine 생산량이 높아졌다. 하지만 C14-49-3-15-7-3-20 균주의 경우에는 proline의 영향을 받지 않았다. 이러한 결과로 Corynebacterium glutamicum 균주에 salt tolerance를 도입하면 L-lysine 생산성을 크게 향상시킬 수 있음을 확인하였다.