• 제목/요약/키워드: salt replacement

검색결과 77건 처리시간 0.022초

Nutritional Studies on Production of Antibacterial Activity by the Zebra Mussel Antagonist, Pseudomonas fluorescens CL0145A

  • Polanski-Cordovano, Grace;Romano, Lea;Marotta, Lauren L.C.;Jacob, Serena;Hoo, Jennifer Soo;Tartaglia, Elena;Asokan, Deepa;Kar, Simkie;Demain, Arnold L.
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권5호
    • /
    • pp.656-660
    • /
    • 2013
  • Pseudomonas fluorescens strain CL0145A was discovered at the New York State Museum Field Research Laboratory as an effective agent against the environmentally destructive zebra mussel, which has contaminated US waters. Dried cells of the microbe are being commercialized as an environmentally friendly solution to the problem. We found that antibiotic activity against the Gram-positive bacterium Bacillus subtilis is produced and excreted by this strain. We have carried out studies to optimize production of the antibiotic. Studies were begun in a complex corn meal medium. Activity was found in both cells and culture supernates and was maximal after one day of fermentation. Static fermentation conditions were found to be superior to shaken culture. Production of extracellular antibiotic in complex medium was found to be dependent on the content of sucrose and enzyme-hydrolyzed casein. Indeed, production was greater in sucrose plus enzyme-hydrolyzed casein than in the complex medium. Of a large number of carbon sources studied as improvements over sucrose, the best was glycerol. An examination of nitrogen sources showed that production was improved by replacement of enzyme-hydrolyzed casein with soy hydrolysates. Production in the simple glycerol-Hy-Soy medium was not improved by addition of an inorganic salt mixture or by complex nitrogen sources, with the exception of malt extract. In an attempt to keep the medium more defined, we studied the effect of amino acids and vitamins as replacements for malt extract. Of 21 amino acids and 7 vitamins, we found tryptophan, glutamine, biotin, and riboflavin to be stimulatory. The final medium contained glycerol, Hy-Soy, tryptophan, glutamine, biotin, and riboflavin.

부분 재구성을 이용한 노이즈 영상의 경계선 검출 시스템 (Edge Detection System for Noisy Video Sequences Using Partial Reconfiguration)

  • 윤일중;정희원;김승종;민병석;이주흥
    • 한국산학기술학회논문지
    • /
    • 제18권1호
    • /
    • pp.21-31
    • /
    • 2017
  • 본 논문에서는 Zynq SoC 플랫폼을 사용하여 노이즈 영상의 경계선 검출 및 노이즈 감소를 위한 부분 재구성 시스템을 설계한다. 실시간 1080p 영상 시퀀스의 처리를 위한 높은 연산량을 제공하기 위해 재구성이 가능한 Programmable Logic 영역을 사용하고 하드웨어 필터를 구현한다. 또한 하드웨어 필터들은 부분 재구성 가능한 영역을 활용한 자동 재구성 기능을 통해 제한된 환경의 임베디드 시스템에서 더욱 더 효과적으로 하드웨어 자원 활용을 가능하게 한다. 주어진 한계점을 넘는 잡음을 포함한 입력 영상의 경우 적응적 노이즈 제거를 위한 필터링 연산을 하드웨어에 자동 재구성하여 수행함으로써 제안된 시스템은 향상된 경계선 검출 결과를 보여 주고 있다. 제안 하는 시스템을 사용하여 영상 시퀀스의 잡음 밀도에 따라 영상 처리 필터의 bitstream이 스스로 재구성 되었을 때 경계선 검출의 정확도에 대한 결과가 향상된 것을 (14~20배 PFOM) 구현 결과에서 보여 준다. 또한, ZyCAP을 사용하여 구현 한 경우 2.1배 빠르게 부분 재구성함을 확인하였다.

Effect of Replacing Cereal Grain in Concentrate With Wheat Bran on the Performance of Lactating Bos indicus×Bos taurus Cows Fed Green Fodder ad libitum in the Northern Plains of India

  • Sahoo, A.;Chaudhary, L.C.;Agarwal, Neeta;Kamra, D.N.;Dutt, T.;Pathak, N.N.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제13권12호
    • /
    • pp.1699-1707
    • /
    • 2000
  • Thirty-one multiparous Bos indicus${\times}$Bos taurus cows were offered concentrate supplements based on (1) 2 kg wheat bran; (2) 4 kg wheat bran; and (3) concentrate (30 maize: 67 wheat bran) at 0.5 kg per 1.0 kg milk produced, in a one year study in India. All supplements also contained 2 parts of a mineral mixture and 1 part salt. Cows were allocated to treatments at calving on parity (2nd and 3rd calf) with 13, 8 and 10 cows respectively in treatments 1, 2 and 3. They were individually fed for whole lactation, the basal diet being ad libitum berseem clover plus 2 kg wheat straw in the cool season/winter (period 1) and chopped maize in summer (period 2). Diets with berseem offered TDN and CP contents of 67.6, 18.2; 65.5, 16.8; and 67.5, 16.8 percent; and with maize fodder 62.6, 12.0; 62.6, 12.5; and 63.3, 12.5 percent for treatments 1, 2 and 3, respectively. Total dry matter (DM) intakes (1) 9.9 kg, (2) 10.9 kg and (3) 11.1 kg DM/day and intake of nutrients (TDN, CP) increased with level of supplementation (p<0.01), but effects of treatment on animal performance were not significant. Cow milk yields averaged (1) 7.9 kg, (2) 8.1 kg and (3) 8.8 kg milk/day (p>0.05) for lactation lengths of 252, 270 and 220 days (p>0.05) and cows gained +7.3; +8.1; and +12.0 kg respectively over their lactation (p>0.05). Wheat bran was used effectively as the sole energy component in concentrates for lactating dairy cows. Its use could potentially reduce feed costs and demands for cereal grain. Reduced concentrate levels may be considered if green forages of high nutrient content are fed ad libitum. Associated economic advantages or disadvantages require further evaluation.

플라즈마 유기막과 OSP PCB 표면처리의 Sn-Ag-Cu 솔더 접합 특성 비교 (Sn-Ag-Cu Solder Joint Properties on Plasma Coated Organic Surface Finishes and OSP)

  • 이태영;김경호;방정환;박남선;김목순;유세훈
    • 마이크로전자및패키징학회지
    • /
    • 제21권3호
    • /
    • pp.25-29
    • /
    • 2014
  • 본 연구에서는 친환경적이고, 보관수명이 1년 이상이며, 부식특성이 좋은 플라즈마 유기막 표면처리에 대한 솔더링 특성을 기존 표면처리법인 OSP와 비교하였다. 플라즈마 표면처리는 할로겐계 전구체를 사용하여 CVD 방법으로 증착하였고, 증착두께는 20 nm이었다. 본 연구에서 사용된 솔더 조성은 Sn-3.0 wt%Ag-0.5 wt%Cu이었다. 염수분무시험에서 플라즈마 표면처리 유기막은 OSP보다 우수한 부식 저항성을 나타내었다. 멀티리플로우 조건에서 플라즈마 표면처리는 OSP보다 우수한 솔더 퍼짐성을 나타내었다. 솔더링 후 단면 미세조직을 분석한 결과, 플라즈마 표면처리와 OSP시편 모두 유사한 금속간화합물층 두께 및 형상을 갖고 있었다. 플라즈마 표면처리와 OSP 모두 유사한 접합강도를 가지고 있었다.

Fabrication and Catalysis of $SiO_2$-Coated Ag@Au Nanoboxes

  • 이재원;장두전
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.588-588
    • /
    • 2013
  • Nanoscale noble-metals have attracted enormous attention from researchers in various fields of study because of their unusual optical properties as well as novel chemical properties. They have possible uses in diverse applications such as devices, transistors, optoelectronics, information storages, and energy converters. It is well-known that nanoparticles of noble-metals such as silver and gold show strong absorption bands in the visible region due to their surface-plasmon oscillation modes of conductive electrons. Silver nanocubes stand out from various types of Silver nanostructures (e.g., spheres, rods, bars, belts, and wires) due to their superior performance in a range of applications involvinglocalized surface plasmon resonance, surface-enhanced Raman scattering, and biosensing. In addition, extensive efforts have been devoted to the investigation of Gold-based nanocomposites to achieve high catalytic performances and utilization efficiencies. Furthermore, as the catalytic reactivity of Silver nanostructures depends highly on their morphology, hollow Gold nanoparticles having void interiors may offer additional catalytic advantages due to their increased surface areas. Especially, hollow nanospheres possess structurally tunable features such as shell thickness, interior cavity size, and chemical composition, leading to relatively high surface areas, low densities, and reduced costs compared with their solid counterparts. Thus, hollow-structured noblemetal nanoparticles can be applied to nanometer-sized chemical reactors, efficient catalysts, energy-storage media, and small containers to encapsulate multi-functional active materials. Silver nanocubes dispersed in water have been transformed into Ag@Au nanoboxes, which show highly enhanced catalytic properties, by adding $HAuCl_4$. By using this concept, $SiO_2$-coated Ag@Au nanoboxes have been synthesized via galvanic replacement of $SiO_2$-coated Ag nanocubes. They have lower catalytic ability but more stability than Ag@Au nanoboxes do. Thus, they could be recycled. $SiO_2$-coated Ag@Au nanoboxes have been found to catalyze the degradation of 4-nitrophenol efficiently in the presence of $NaBH_4$. By changing the amount of the added noble metal salt to control the molar ratio Au to Ag, we could tune the catalytic properties of the nanostructures in the reduction of the dyes. The catalytic ability of $SiO_2$-coated Ag@Au nanoboxes has been found to be much more efficient than $SiO_2$-coated Ag nanocubes. Catalytic performances were affected noteworthily by the metals, sizes, and shapes of noble-metal nanostructures.

  • PDF

Manganese and Iron Interaction: a Mechanism of Manganese-Induced Parkinsonism

  • Zheng, Wei
    • 한국환경성돌연변이발암원학회:학술대회논문집
    • /
    • 한국환경성돌연변이발암원학회 2003년도 추계학술대회
    • /
    • pp.34-63
    • /
    • 2003
  • Occupational and environmental exposure to manganese continue to represent a realistic public health problem in both developed and developing countries. Increased utility of MMT as a replacement for lead in gasoline creates a new source of environmental exposure to manganese. It is, therefore, imperative that further attention be directed at molecular neurotoxicology of manganese. A Need for a more complete understanding of manganese functions both in health and disease, and for a better defined role of manganese in iron metabolism is well substantiated. The in-depth studies in this area should provide novel information on the potential public health risk associated with manganese exposure. It will also explore novel mechanism(s) of manganese-induced neurotoxicity from the angle of Mn-Fe interaction at both systemic and cellular levels. More importantly, the result of these studies will offer clues to the etiology of IPD and its associated abnormal iron and energy metabolism. To achieve these goals, however, a number of outstanding questions remain to be resolved. First, one must understand what species of manganese in the biological matrices plays critical role in the induction of neurotoxicity, Mn(II) or Mn(III)? In our own studies with aconitase, Cpx-I, and Cpx-II, manganese was added to the buffers as the divalent salt, i.e., $MnCl_2$. While it is quite reasonable to suggest that the effect on aconitase and/or Cpx-I activites was associated with the divalent species of manganese, the experimental design does not preclude the possibility that a manganese species of higher oxidation state, such as Mn(III), is required for the induction of these effects. The ionic radius of Mn(III) is 65 ppm, which is similar to the ionic size to Fe(III) (65 ppm at the high spin state) in aconitase (Nieboer and Fletcher, 1996; Sneed et al., 1953). Thus it is plausible that the higher oxidation state of manganese optimally fits into the geometric space of aconitase, serving as the active species in this enzymatic reaction. In the current literature, most of the studies on manganese toxicity have used Mn(II) as $MnCl_2$ rather than Mn(III). The obvious advantage of Mn(II) is its good water solubility, which allows effortless preparation in either in vivo or in vitro investigation, whereas almost all of the Mn(III) salt products on the comparison between two valent manganese species nearly infeasible. Thus a more intimate collaboration with physiochemists to develop a better way to study Mn(III) species in biological matrices is pressingly needed. Second, In spite of the special affinity of manganese for mitochondria and its similar chemical properties to iron, there is a sound reason to postulate that manganese may act as an iron surrogate in certain iron-requiring enzymes. It is, therefore, imperative to design the physiochemical studies to determine whether manganese can indeed exchange with iron in proteins, and to understand how manganese interacts with tertiary structure of proteins. The studies on binding properties (such as affinity constant, dissociation parameter, etc.) of manganese and iron to key enzymes associated with iron and energy regulation would add additional information to our knowledge of Mn-Fe neurotoxicity. Third, manganese exposure, either in vivo or in vitro, promotes cellular overload of iron. It is still unclear, however, how exactly manganese interacts with cellular iron regulatory processes and what is the mechanism underlying this cellular iron overload. As discussed above, the binding of IRP-I to TfR mRNA leads to the expression of TfR, thereby increasing cellular iron uptake. The sequence encoding TfR mRNA, in particular IRE fragments, has been well-documented in literature. It is therefore possible to use molecular technique to elaborate whether manganese cytotoxicity influences the mRNA expression of iron regulatory proteins and how manganese exposure alters the binding activity of IPRs to TfR mRNA. Finally, the current manganese investigation has largely focused on the issues ranging from disposition/toxicity study to the characterization of clinical symptoms. Much less has been done regarding the risk assessment of environmenta/occupational exposure. One of the unsolved, pressing puzzles is the lack of reliable biomarker(s) for manganese-induced neurologic lesions in long-term, low-level exposure situation. Lack of such a diagnostic means renders it impossible to assess the human health risk and long-term social impact associated with potentially elevated manganese in environment. The biochemical interaction between manganese and iron, particularly the ensuing subtle changes of certain relevant proteins, provides the opportunity to identify and develop such a specific biomarker for manganese-induced neuronal damage. By learning the molecular mechanism of cytotoxicity, one will be able to find a better way for prediction and treatment of manganese-initiated neurodegenerative diseases.

  • PDF

고양이의 담낭근 수축에 있어서 세포내 기전 (Cellular Pathways in Agonist-induced Gallbladder Muscle Contraction in the Cat)

  • 임병용;김치대;김동헌
    • 대한약리학회지
    • /
    • 제32권1호
    • /
    • pp.67-74
    • /
    • 1996
  • 고양이 담낭근에서 효소학적으로 분리한 평활근 세포는 cholecystokinin octapeptide (CCK-8), acetylcholine (ACh) 및 KCl에 의하여 용량에 의존하여 수축하였다. 이들 효현제 (CCK-5, ACh 및 KCl)에 의한 평활근 세포의 최대수축은 각각$10^{-9}M$, $10^{-5}M$ 및 20mM 농도에서 야기되었다. CCK-8에 의하여 야기되는 이들 평활근 세포의 수축은 HEPES 완충액에 $Ca^{2+}$을 제거시킴에 의하여 영향을 받지 아니하였으나, $Ca^{2+}$ 대신에 strontium을 첨가시켰을때 수축반응이 완전하게 억제되었다 (p<0.001). 이와는 반대로 KCl에 의한 수축반응은 strontium 치환에 의하여 영향을 받지 아니하고 HEPES 완충액에 $Ca^{2+}$을 제거시킴에 의하여 억제되었다 (p<0.01). ACh에 의하여 야기되는 수축반응은 세포 외액의 $Ca^{2+}$을 제거시킴에 의하여 중등도의 억제반응이 야기되었으나 (p<0.05) strontium에 의하여 영향을 받지 아니하였다. Saponin으로 세포 투과성 변동을 야기시킨 근세포에서 inositol 1,4,5-trisphosphate $(IP_3)$와 CCK-8은 수축반응을 일으켰고, 이러한 수축반응은 calmodulin 길항제인 CGS 9343B에 의하여 차단되었으며 (p<0.001), heparin은 CCK-8 및 $IP_3$의 작용을 완전하게 봉쇄하였다 (p<0.001). 그러나 이러한 수축반응에 있어서 protein kinase C 길항제인 H7은 아무런 작용을 나타내지 못하였다. 이러한 결과로 볼 때 CCK-8에 의하여 야기된 고양이 담낭근 세포의 수축반응은 $IP_3$에 의하여 세포내 저장소로부터 유리된 $Ca^{2+}$과 calmodulin에 의존적인 과정에 의하여 매개되어 지는 것으로 생각된다. 또한 ACh는 세포외액의 $Ca^{2+}$ 뿐만 아니라 세포내 저장소의 $Ca^{2+}$ 모두를 이용하며, KCl은 전적으로 세포외액의 $Ca^{2+}$에 의존적인 형태로 calmodulin과는 무관하게 고양이 담낭근 세포의 수축반응을 야기시키는 것으로 사료된다.

  • PDF