• Title/Summary/Keyword: salt production

Search Result 752, Processing Time 0.022 seconds

Design and neutronic analysis of the intermediate heat exchanger of a fast-spectrum molten salt reactor

  • Terbish, Jamiyansuren;van Rooijen, W.F.G.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2126-2132
    • /
    • 2021
  • Various research groups and private interprises are pursuing the design of a Molten Salt Reactor (MSR) as one of the Generation-IV concepts. In the current work a fast neutron MSR using chloride fuel is analyzed, specially analyzing the power production and neutron flux level in the Intermediate Heat Exchanger (IHX). The neutronic analysis in this work is based on a chloride-fuel MSR with 600 MW thermal power. The core power density was set to 100 MW m-3 with a core H/D [[EQUATION]] 1.0 amd four Intermediate Heat Exchanger (IHX). This leads to a power of 150 MW per IHX; this power is also comparable to the IHX proposed in the SAMOFAR framework. In this work, a preliminary design of a 150 MW helical-coil IHX for a chloride-fueled MSR is prepared and the fission rate, capture rate, and inelastic scatter rate are evaluated.

The present condition and development prospect of the fermented fishery products (젓갈산업의 현황 및 발전 방향)

  • Kim, Sang Moo
    • Food Science and Industry
    • /
    • v.53 no.2
    • /
    • pp.200-214
    • /
    • 2020
  • The traditional Korean fermented fish products are classified into mainly three groups; Jeot-gal, Aek-jeot, and Sik-hae. Jeot-gal is a salt-fermented fish. Aek-jeot (Eoganjang) is actually a liquid part of Jeot-gal. Sik-hae is a salt-fermented whole or part fisheries with adjuncts. The production of jeot-gal products has been increased constantly. However, there is not enough fishery for raw materials. Recently, consumers have been preferred low-salted foods because they have become aware that high levels of salt cause adult diseases such as hypertension or gastric cancers. The main consumers of jeot-gal are adults above 40~50 years old. Young generation and school nutrition teachers dislike fishery products because of distinct fish smell, small bone, as well as food safety. Therefore, in order to increase the consumption of jeot-gal and extend its industry, jeot-gal should be developed to match the preference of new generation with good safety, health-oriented, and new concept.

Effect of Soil Salinity on Growth, Yield and Nutrients Uptake of Whole Crop Barley in Newly Reclaimed Land (신간척지에서 토양 염농도가 청보리 생육, 수량 및 양분 흡수에 미치는 영향)

  • Lee, Sang-Bok;Cho, Kwang-Min;Shin, Pyung;Yang, Chang-Hyu;Back, Nam-Hyun;Lee, Kyeong-Bo;Baek, Seung-Hwa;Chung, Doug-Young
    • Korean Journal of Environmental Agriculture
    • /
    • v.32 no.4
    • /
    • pp.332-337
    • /
    • 2013
  • BACKGROUND: Newly reclaimed land has poor soil environment for crop growth since it is high in salt concentration but low in organic content compared with ordinary soil. It is known that whole-crop-barley can grow better in the soil of relatively high salt concentration than other crops but, the growth is poor at the concentration if higher than certain amount and it is a difficulty to secure productivity. Hence, the level of soil salt concentration suitable for the production of bulky feed in newly reclaimed land has been investigated. METHODS AND RESULTS: At Saemanguem reclaimed land, the land for the soil salt concentration electrical conductivity (EC) 0.8, 3.1, 6.5, 11.0 dS/m was selected; and chemical fertilizer $N-P_2O_5-K_2O$ (150-100-100kg/ha) was tested; and forage barley 220kg/ha were sown. The soil salt concentration during the cultivation period decreased in the order of harvest season>earing season>sowing season>wintering season, and the salt concentration in harvest season is 1.4-4.2 times higher than that of the sowing season. The higher the salt concentration, the poorer the over ground growth due to poor rooting; especially at EC 11.0 ds/m there was emergence but, it blighted after wintering. The Yield from the soil salt concentration 3.1dS/m and 6.5 dS/m was 68% and 35% from that of the soil salt concentration 0.8 dS/m (8.8 MT/ha) respectively. The proline content in early life stage was more than that of the harvest season, and it increased with salt concentration. The higher salt concentration, the more $Na_2O$ and MgO content in harvest season; but the higher the salt concentration, the less the content of N, $P_2O_5$, $K_2O$ and CaO. CONCLUSION(S): When the soil salt concentration becomes higher than 3.1 dS/m, the yield becomes poor because there is serious growth inhibition of forage barley both in root part and above aerial part that results in unbalanced absorption of nutrients. Therefore, it is recommended that the salt concentration should be lowered below 3.1 dS/m by underground drainage facilities or irrigating water for the stable production of whole-crop-barley.

Optimization of gibberellic acid production by Methylobacterium oryzae CBMB20 (지베렐린산 생산을 위한 Methylobacterium oryzae CBMB20의 최적 배양조건 확립)

  • Siddikee, Md. Ashaduzzaman;Hamayun, Muhammad;Han, Gwang-Hyun;Sa, Tong-min
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.4
    • /
    • pp.522-527
    • /
    • 2010
  • Gibberellic acid ($CA_3$) is used in many industries and constitutes the primary gibberellins produced by fungi and bacteria. However, there is no information on $CA_3$ production by Methylobacterium oryzae CBMB20, a novel plant growth promoting bacterium. We investigated the favorable carbon (C) and nitrogen (N) sources and ratios and cultural conditions, such as incubation temperature, pH of the culture medium, and incubation period for the maximum production of $CA_3$ by Methylobacterium oryzae CBMB20. Maximum $CA_3$ production was observed in ammonium mineral salt (AMS) broth supplemented with Na-succinate and $NH_4Cl$ as C and N sources, respectively. The maximum $CA_3$ production was found at the C/N ratio of 5:0.4 g $L^{-1}$. The highest $CA_3$ production was obtained when the bacterial culture was incubated at $30^{\circ}C$ for 96 h at pH 7.

Production of Bioflocculant by Agrobacterium sp. KF-67 (Agrobacterium sp. KF-67에 의한 미생물 응집제 생산)

  • 정준영;김교창;도대홍
    • The Korean Journal of Food And Nutrition
    • /
    • v.10 no.3
    • /
    • pp.295-301
    • /
    • 1997
  • Among 120 microorganisms isolated from soil, KF-67 was the best producer of flocculant and was examined for flocculating ability in the kaolin clay and CaCl2 suspension. KF-67 was identified to be a species belong to the genus Agrobacterium sp. The influence of components of the culture medium for flocculant production by Agrobacterium sp. KF-67 was studied. The favorable carbon and inorganic nitrogen source for production of the flocculant were glucose and NH4NO3 and their addition concentrations were 2% and 0.1%, respectively. Addition of the organic nitrogen such as yeast extract, peptone and inorganic salt such as CaCO3 significantly increased the production of flocculant. These result indicated that the production of flocculant by Agrobacterium sp. was significantly affected by both organic nitrogen and inorganic salt. The components of the optimum culture medium were 2% glucose, 0.1% NH4NO3, 0.01% yeast extract, 0.01% peptone, 0.04% CaCO3, 0.03% NaCl in initial pH 7.5 when cultured with rotary shaker controlled at 3$0^{\circ}C$ and 120 rpm. Under the optimum culture medium, flocculant production was highly improved about 76% than that isolation medium.

  • PDF

Preparation of Low Salt and functional Kochujang Containing Chitosan (키토산을 함유하는 저식염 기능성 고추장의 제조)

  • 나상언;서규석;최정호;송근섭;최동성
    • The Korean Journal of Food And Nutrition
    • /
    • v.10 no.2
    • /
    • pp.193-200
    • /
    • 1997
  • In order to manufacture the low salt and functional Kochujang, salt amount was reduced to 6% and chitosan was added to 0.25% to the Kochujang preparation. The contents of ash, moisture, crude fat and crude protein in Kochujang were not affected by the reduced salt concentration and chitosan addition. pH and titratable acidity were not significantly changed by the addition of chitosan. Ethanol content was higher in 6% salt Kochujang tan in 9% salt Kochujang and decreased by the addition of chitosan. Reducing sugar content was lower in 6% salt Kochujang than in 9% salt Kochujang and increased by chitosan addition. $\alpha$-Amylase activity was slightly inhibited by the addition of chitosan, however, $\beta$-amylase, acidic protease and neutral protease activities were not affected. Amino nitrogen and ammonia nitrogen contents were higher in 6% salt Kochujang than in 9% salt Kochujang, but ammonia nitrogen production was significantly decreased by chitosan addition. Also the growth of bacteria and yeasts were slightly inhibited by the addition of chitosan. From the above results we concluded that 0.25% chitosan was the good concentration to prepare the low salt and functional Kochujang.

  • PDF

Standardization of Preparation of Chinese Cabbage Kimchi I. Effects of Dry Salting of Method Salt Content on the Texture of Kimchi (통배추김치 제조의 표준화 연구 I. 농도별 건염법이 배추 질감에 미치는 영향)

  • 정순애;오현희;전소현;최은정;김병미;조신호
    • The Korean Journal of Food And Nutrition
    • /
    • v.16 no.4
    • /
    • pp.423-429
    • /
    • 2003
  • Kimchi has been worldwide recognized as a traditional Korean fermented food, In the Chinese cabbage's pickling, salt content of evenly penetrate into the tissue affects on the texture of matured kimchi, But the previous method which usually using brine salting has a disadvantage of uneven penetration of salt into the leaves and stems. The purpose of the study is to develope the method which produce superior kimchi by evenly penetrate the salt into the tissue rapidly, The dry salting method is directly spread the salt on the surface of chinese cabbage as percentage in weight with 10, 12, 14, 16%(s) and pickled in this state for 5 hours. Brine salting method is soaking chinese cabbage in the 16% salt solution(16%B) for 20 hours. Sensory evaluation, contents of salt, properties of mechanical hardness and micro structure were studied among fresh cabbage, 16%B and 10, 12, 14, 16%(s) cabbage, The result of salt contents in all groups of pickled chinese cabbage were significantly increased compared with fresh cabbage. The compressive force of cabbage's steams by mechanical measurement was significantly decreased but cutting force was increased. In pickled cabbage, the cutting force was the highest correlated with salt content, In the sensory evaluation, the salty taste of leaves and chewy degree were significantly increased, but the hardness and crips of the stems were significantly decreased by increasing salt contents. Therefore the dry salting is the most excellent pickling method in small amount of kimchi production by saving salt amount and time, furthermore due to even penetration of salt into leaves and stems.

Salt Removal and Agricultural Application of Food Waste-Biochar (음식폐기물바이오차의 염분 제거 및 농업적 활용)

  • Sin-Sil Kim;Jun-Suk Rho;Jae-Hoon Lee;Ah-Young Choi;Seul-Rin Lee;Yu-Jin Park;Jong-Hwan Park;Young-Han Lee;Dong-Cheol Seo
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.2
    • /
    • pp.159-167
    • /
    • 2023
  • Food waste (FW) emissions in South Korea amounted to 4.77 million tons in 2021, and continue to increase. Various technologies have been developed to treat FW, with recent research focusing on biochar production through pyrolysis to reduce FW. However, the agricultural application of food waste-biochar (FWBC) is limited by the salt accumulated during pyrolysis. This study investigated salt removal from and the kinetic characteristics of FWBC, and subsequently evaluated its agricultural applications. FW was pyrolyzed at 350℃ for 4 h, and subsequently washed for 0.1, 0.25, 0.5, 0.75, 1, 5, 15, and 30 min to remove salt. FWBC had a salt concentration of 5.75%, which was effectively removed through washing. The salt concentration decreased rapidly at the beginning (1 min) and then slowly decreased, unlike in FW, in which the salt decreased continuously and slowly. The salt removal speed constant (K) was 1.5586 (Stage 1, FWBC) > 0.0445 (Stage 2, FWBC) > 0.0026 (FW). In a lettuce cultivation experiment, higher biomass was achieved using washed FWBC than when using unwashed FWBC and FW, and soil properties were improved. Overall, these findings suggest that although FW reduction using pyrolysis causes a salt accumulation problem, the salt can be effectively removed through washing. The use of washed FWBC can enhance plant growth and soil properties.

Solid-salt pressure-retarded osmosis with exothermic dissolution energy for sustainable electricity production

  • Choi, Wook;Bae, Harim;Ingole, Pravin G.;Lee, Hyung Keun;Kwak, Sung Jo;Jeong, Nam Jo;Park, Soon-Chul;Kim, Jong Hak;Lee, Jonghwi;Park, Chul Ho
    • Membrane and Water Treatment
    • /
    • v.6 no.2
    • /
    • pp.113-126
    • /
    • 2015
  • Salinity gradient power (SGP) systems have strong potential to generate sustainable clean electricity for 24 hours. Here, we introduce a solid-salt pressure-retarded osmosis (PRO) system using crystal salt powders rather than seawater. Solid salts have advantages such as a small storage volume, controllable solubility, high Gibbs dissolution energy, and a single type of water intake, low pretreatment costs. The power densities with 3 M draw solutions were $11W/m^2$ with exothermic energy and $8.9W/m^2$ without at 35 bar using a HTI FO membrane (water permeability $A=0.375L\;m^{-2}h^{-1}bar^{-1}$). These empirical power densities are ~13% of the theoretical value.

Surimi Quality from Mechanically Deboned Chicken Meat as Affected by Washing Cycle, Salt Concentration, Heating Temperature and Rate

  • Min, Byung-Jin;Lee, Sung-Ki
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.1
    • /
    • pp.131-136
    • /
    • 2004
  • The effects of salt concentration and heating conditions on the thermal gelation properties of surimi produced from mechanically deboned chicken meat (MDCM) were investigated. Chicken surimi was manufactured by washing (MDCM: 0.5% NaCl=1:4), standing, straining and centrifuging. The fat, water-soluble protein and heme pigment in the MDCM were removed by increasing washing cycles. The compressive force of the chicken surimi increased as the concentration of salt was increased from 0% to 5%. Total gel strength of the surimi measured by texture profile analysis showed a maximum in the range 3-5% NaCl. Microstructural analysis showed that the unfolding network structure of the surimi gel began to appear at NaCl concentrations>2%. The optimum heating condition for gelation was $90^{\circ}C$ for 40 min as this resulted in maximum values for measures of gel strength including compressive force, hardness, fracturability, adhesiveness, springiness, gumminess, chewiness and resilience. Chicken surimi gel formed by cooking at a heating rate of $1^{\circ}C/min$ to $90^{\circ}C$ showed better a texture than gels produced at $1.85^{\circ}C/min$. Our result show that a lower rate of heating improves chicken surimi gelation.