• Title/Summary/Keyword: salinity environment

Search Result 694, Processing Time 0.029 seconds

Survival of the Ark Shell, Scapharca subcrenata and Physiological and Histological Changes at Decreasing Salinity

  • Shin, Yun-Kyung;Lee, Won-Chan;Jun, Rae-Hong;Kim, Sung-Yeon;Park, Jung-Jun
    • Fisheries and Aquatic Sciences
    • /
    • v.12 no.3
    • /
    • pp.209-218
    • /
    • 2009
  • We examined physiological and histological responses related to the survival, oxygen consumption, excretion, and O/N ratio of the ark shell, Scapharca subcrenata, as a result of salinity changes. The 20-day $LS_{50}$ (median lethal salinity) at $15^{\circ}C$ was 13.87 practical salinity units (psu; confidence limits 10.30-18.74 psu), whereas the 14-day $LS_{50}$ at $25^{\circ}C$ was 12.59 psu (confidence limits 8.03-18.16 psu). In conditions of decreasing salinity, the osmolarity of individuals acclimated within 5 h above 26.4 psu but required more than 60 h below 13.2 psu. Oxygen consumption and ammonia excretion rates varied irregularly as salinity decreased. The O/N ratio was 19 and 27 at water temperatures of $15^{\circ}C$ and $25^{\circ}C$, respectively, but decreased to 1-10 as salinity declined. The effects of decreasing salinity were observed in the histological changes to each organ of S. subcrenata. As salinity decreased, cilia fell off, the epithelial layer underwent necrosis and vacuolation, the connective tissue layers of the mantle and visceral mass were destroyed, and hemocytes increased in the gills. The results of this study could prove important in investigating causes of mass mortality and managing shellfish aquaculture farms.

Shift in benthic diatom community structure and salinity thresholds in a hypersaline environment of solar saltern, Korea

  • Bae, Hanna;Park, Jinsoon;Ahn, Hyojin;Khim, Jong Seong
    • ALGAE
    • /
    • v.35 no.4
    • /
    • pp.361-373
    • /
    • 2020
  • The community dynamics of benthic diatoms in the hypersaline environment are investigated to advance our understanding how salinity impacts marine life. Diatoms were sampled in the two salterns encompassing salt Ponds, ditches, and seawater reservoirs (n = 11), along the salinity gradient (max = 324 psu), and nearby tidal flats (n = 2). The floral assemblages and distributions across sites and stations showed great variations, with a total of 169 identified taxa. First, not surprisingly, higher diversity of benthic diatoms was found at natural tidal flats than salterns. The saltern diatoms generally showed salinity dependent distributions with distinct spatial changes in species composition and dominant taxa. Biota-environment and principal component analysis confirmed that salinity, mud content, and total nitrogen were key factors influencing the overall benthic community structure. Some dominant species, e.g., Nitzschia scalpelliformis and Achnanthes sp. 1, showed salinity tolerance / preference. The number of diatom species at salinity of >100 psu reduced over half and no diatoms were found at maximum salinity of 324 psu. The highest salinity for the observed live diatoms was 205 psu, however, a simple regression indicated a theoretical salinity threshold of ~300 psu on the survival. Finally, the indicator species were identified along the salinity gradient in salterns as well as natural tidal flats. Overall, high species numbers, varying taxa, and euryhaline distributions of saltern diatoms collectively reflected a dynamic saltern ecosystem. The present study would provide backgrounds for biodiversity monitoring of ecologically important microalgal producers in some unique hypersaline environment, and elsewhere.

The Effect of Salinity on Biological Nutrient Removal in SBR (SBR공정에서 영양염류 제거에 대한 염분의 영향)

  • Song, Changsoo;Oh, Junseung
    • Journal of Korean Society on Water Environment
    • /
    • v.18 no.3
    • /
    • pp.237-243
    • /
    • 2002
  • The effect of a salinity on the performance of a biological nutrient removal system was investigated using a model SBR(Sequencing Bach Reactor) system. The system was operated at a 12hr, 18hr, 24hr, and 36hr HRT with a salinity level of 20,000mg/L and compared with a system similarly operated with fresh water. The influent salinity level of 8,000 mg/L does not have a significant effect on BOD removal efficiency, there is a noticeable decrease in BOD removal rate from 10,000 mg Cl-/L. The Nitrogen could be removed from the saline wastewater with the same efficiency as for the fresh water because of low C/N ratio in anoxic period. The excess biological phosphorous removal is highly affected by the increase in the influent salinity. The efficiency is decreased from 96.6% to 43.4% when the influent salinity is increased from 0 to 20,000mg/L.

General Characteristics of the East Sea Intermediate Water (동해중층수의 일반적인 분포 특성)

  • Shin, Chang-Woong;Byun, Sang-Kyung;Kim, Cheol-Soo;Lee, Jae-Hak;Kim, Bong-Chae;Hwang, Sang-Chull;Seung, Young-Ho;Shin, Hong-Ryeol
    • Ocean and Polar Research
    • /
    • v.29 no.1
    • /
    • pp.33-42
    • /
    • 2007
  • To obtain the overall distribution patterns and characteristics of the East Sea Intermediate Water (ESIW), the historical data obtained by the Japan Maizuru Marine Observatory (MMO) and the Korea Ocean Research and Development Institute (KORDI) were analyzed. To obtain water characteristics of the ESIW on isopycnal surfaces, temperature, salinity and dissolved oxygen were interpolated at every 0.01 interval of potential density. And then the interpolated values were averaged at the same potential density. This potential density average method preserved the salinity minimum layer more clearly compared to the depth average method. The potential density(${\sigma}_{\theta}$) range of the ESIW was $26.9{\sim}27.3$. The representative potential density of the ESIW was found to be 27.2, because the characteristics of the ESIW was clear at this density. From the horizontal distributions of physical properties on the isopycnal surface of $27.2{\sigma}_{\theta}$ it is suggested that the low salinity ESIW circulates anticlockwise over the whole basin with the high salinity intermediate water. The low salinity intermediate water extended from the northwestern part to the east along the sub-polar front and to the Ulleung Basin along the east coast of Korea.

The Expression of Leptin, Estrogen Receptors, and Vitellogenin mRNAs in Migrating Female Chum Salmon, Oncorhynchus keta: The Effects of Hypo-osmotic Environmental Changes

  • Choi, Young Jae;Kim, Na Na;Shin, Hyun Suk;Choi, Cheol Young
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.4
    • /
    • pp.479-487
    • /
    • 2014
  • Leptin plays an important role in energy homeostasis and reproductive function in fish, especially in reproduction. Migrating fish, such as salmonoids, are affected by external environmental factors, and salinity changes are a particularly important influence on spawning migrations. The aim of this study was to test whether changes in salinity affect the expression of leptin, estrogen receptors (ERs), and vitellogenin (VTG) in chum salmon (Oncorhynchus keta). The expression and activity of leptin, the expression of ERs and VTG, and the levels of estradiol-$17{\beta}$ and cortisol increased after the fish were transferred to FW, demonstrating that changes in salinity stimulate the HPG axis in migrating female chum salmon. These findings reveal details about the role of elevated leptin levels and sex steroid hormones in stimulating sexual maturation and reproduction in response to salinity changes in chum salmon.

Distribution and characteristic of growth of Vibrio spp. in Incheon coastal area (인천연안 해역의 Vibrio속 세균분포 및 증식특성)

  • Hwang, Kyoung-Wha;Gong, Young-Woo;Lee, Jae-Mann;Go, Jong-Myoung;Kim, Yong-Hee;Oh, Bo-Young
    • Journal of environmental and Sanitary engineering
    • /
    • v.23 no.3
    • /
    • pp.31-38
    • /
    • 2008
  • This study was conducted to investigate the effects of environmental factor such as temperature, salinity, turbidity, pH and dissolved oxygen on the growth of Vibrio spp.. In this survey, total 56 seawater samples were obtained from 8 different sites of the Incheon coastal area during the periods from april 2008 to october 2008. Enumeration of Vibrio spp. was determined by using the most probable number(MPN) procedure. Isolation rates of V. parahaemolyticus, V. vulnificus, V. cholerae in all samples tested were 44.0%, 21.4% and 13.1%, respectively. The enumeration of Vibrio spp. was very low correlated with water temperature and pH and negatively correlated with salinity, dissolved oxygen and turbidity. We found salinity to be the parameter most highly correlated with the enumeration of Vibrio spp. The highest rate of antibiotic resistance of V.vulnificus and V.parahaemolyticus was Cefazolin(11.5%), Ampicillin(70.8%), respectively.

Delayed Mode Quality Control of Argo Data and Its Verification in the Pacific Ocean (태평양 Argo 자료의 지연모드 품질관리 및 검증연구)

  • Yang, Joon-Yong;Kang, Seong-Yun;Go, Woo-Jin;Suh, Young-Sang;Seo, Jang-Won;Suk, Moon-Sik
    • Journal of Environmental Science International
    • /
    • v.17 no.12
    • /
    • pp.1353-1361
    • /
    • 2008
  • Quality control of Argo(Array for Real-time Geostrophic Oceanography) data is crucial by reason that salinity measurements are liable to experience some drift and offset due to biofouling, contamination of sensor and wash-out of biocide. The automated Argo real-time quality control has a limit of sorting data quality, so that WJO program is adopted as standardized method of Argo delayed mode quality control (DMQc) in the world that is a precise quality control method. We conducted DMQC on pressure, temperature and salinity measured by Argo floats in the Pacific Ocean including expert evaluation. Particularly, salinity data were corrected using WJO program. 4 salinity profiles of Argo delayed mode were compared with nearby in situ CTD data and other Argo data in deep layer where oceanographic conditions are stable in time and space. The differences of both salinities were lower than target accuracy of Argo. As compared with the difference of salinities before DMQC, those after DMQC decreased by 60-80 percent. Quality of delayed mode salinity data seemed to be improved correcting salinity data suggested by WJO program.

Spatial Distributions of Macrozoobenthic Communities in the Seomjin River Estuary (섬진강 하구역에 서식하는 대형저서동물군집의 분포양상)

  • Seo, Jin-Young;Kim, Jung-Hyun;Choi, Jin-Woo
    • Ocean and Polar Research
    • /
    • v.39 no.1
    • /
    • pp.23-34
    • /
    • 2017
  • This study was carried out to investigate the spatial distributions of the macrobenthic communities in the Seomjin River estuary from May, 2015 to May, 2016. The number of species was 163, the mean density was $1,865ind.m^{-2}$, biomass was $204g{\cdot}wet\;m^{-2}$ during this study period. The highest number of species and density appeared among polychaetes whereas the most biomass was contributed by mollusks due to the presence of Corbicula japonica in every season. The study area was divided into 3 regions with similar benthic fauna responding to the gradient of the salinity. Praxillella praetermissa was the dominant species in regions of over 30 psu during all seasons. C. japonica and Hediste diadroma were dominant in the upper regions of the Seomjin River where the salinity was less than 10 psu. Heteromastus filiformis showed the broadest distributional range and dominated in all seasons except for the most upper stream at st. 7. From the result of the Bio-Env analysis, salinity was the most important environmental factor affecting the formation of macrobenthic communities in the study area, and salinity and TOC were the highest contributors to the macrobenthic communities. From the correlation analysis between major dominant species and environmental factors, C. japonica, Prionospio japonica and H. diadroma showed a negative correlation with salinity, while P. praetermissa and Scolectoma longifolia showed a positive correlation. H. filiformis was little affected by salinity but showed a positive correlation with TOC or silt content of sediment.

Dispersion of High Temperature and High Salinity Water Discharged from Offshore Desalination Plant (해상 담수화 공장에서 배출되는 고온고염 해수의 확산예측)

  • Lee Moonjin;Hong Keyyong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.3 no.2
    • /
    • pp.33-40
    • /
    • 2000
  • Dispersion of high temperature and high salinity water discharged from a desalination plant is numerically estimated to investigate its impact on marine environment. The plant is installed on a floating barge located in Jinhae Bay and takes 200 tons of seawater per day. Fifty tons of intake are changed into fresh water, while 150 tons of those are discharged as the water of 15℃ warmer and 1.33 times saltier than surrounding seawater. In this dispersion model, advection is described by two-dimensional tidal currents and turbulent diffusion is simulated by Monte Carlo technique. Decay of water temperature is modelled by heat exchange between the atmosphere and the ocean, while decay of water salinity is ignored. The distributions of temperature and salinity come to equilibrium when the dispersion model is run for 100 days for temperature and for 365 days for salinity, respectively. At equilibrium state the water temperature and salinity rise 0.01℃ and 0.001‰ higher than ambient seawater, respectively.

  • PDF

Spatial Distribution and Improvement of Water Quality in the Youngrang Lake (영랑호 수질의 공간적 분포 및 개선방안)

  • Huh, In-Ryang;Yi, Geon-Ho;Jeong, Won-Gu;Kwon, Jae-Hyouk
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.3
    • /
    • pp.341-347
    • /
    • 2017
  • From 2014 to 2016 water quality survey results according to the location and depth of Youngrang Lake are as follows: Distribution of dissolved oxygen in the water depth was investigated by the middle section and the downstream 1st, 3rd, 5th, when investigating bottem 1m interval anoxic layer. In organic matter and nutrient concentration distribution COD upstream 2.8 mg/L, middle section 4.2 mg/L downstream 4.1 mg/L, more than two times higher in bottem layer and TP concentrations showed a similar trend with COD, upstream of 0.047 mg/L, middle section was 0.051 mg/L, downstream of 0.059 mg/L. There was a difference in salinity every survey period the average salinity is lowest with 28.5‰ when the second survey. And the highest with 32.1‰ in the fourth investigation. Korean trophic state index($TSI_{KO}$) were showed eutrophic conditions in the middle section and downstream else showed mesotrophic state in the entire period. In order to evaluate the cause of water pollution Youngrang lake, regression analysis of the relationship between salinity and DO, COD, TN, TP, Chl-a results, $R^2$ is from 0.63 to 0.95 Youngrang lake water quality was found to have a close relationship with salinity due to inflow of seawater. As a result, in order to improve the quality of Youngrang lake efficient incorporation of the amount of water through the seawater influent as it is considered the key.