• Title/Summary/Keyword: salicylic acid signaling

Search Result 43, Processing Time 0.019 seconds

Identification of disease resistance to soft rot in transgenic potato plants that overexpress the soybean calmodulin-4 gene (GmCaM-4) (대두 칼모듈린 단백질, GmCaM-4를 발현하는 형질전환 감자의 무름병 저항성 확인)

  • Park, Hyeong Cheol;Chun, Hyun Jin;Kim, Min Chul;Lee, Sin Woo;Chung, Woo Sik
    • Journal of Plant Biotechnology
    • /
    • v.47 no.2
    • /
    • pp.157-163
    • /
    • 2020
  • Calmodulin (CaM) mediates cellular Ca2+ signals in the defense responses of plants. We previously reported that GmCaM-4 and 5 are involved in salicylic acid-independent activation of disease resistance responses in soybean (Glycine max). Here, we generated a GmCaM-4 cDNA construct under the control of the cauliflower mosaic virus (CaMV) 35S promoter and transformed this construct into potato (Solanum tuberosum L.). The constitutive over-expression of GmCaM-4 in potato induced high-level expression of pathogenesis-related (PR) genes, such as PR-2, PR-3, PR-5, phenylalanine ammonia-lyase (PAL), and proteinase inhibitorII (pinII). In addition, the transgenic potato plants exhibited enhanced resistance against a bacterial pathogen, Erwinia carotovora ssp. Carotovora (ECC), that causes soft rot disease and showed spontaneous lesion phenotypes on their leaves. These results strongly suggest that a CaM protein in soybean, GmCaM-4, plays an important role in the response of potato plants to pathogen defense signaling.

Time-based Expression Networks of Genes Related to Cold Stress in Brassica rapa ssp. pekinensis (배추의 저온 스트레스 처리 시간대별 발현 유전자 네트워크 분석)

  • Lee, Gi-Ho;Yu, Jae-Gyeong;Park, Young-Doo
    • Horticultural Science & Technology
    • /
    • v.33 no.1
    • /
    • pp.114-123
    • /
    • 2015
  • Plants can respond and adapt to cold stress through regulation of gene expression in various biochemical and physiological processes. Cold stress triggers decreased rates of metabolism, modification of cell walls, and loss of membrane function. Hence, this study was conducted to construct coexpression networks for time-based expression pattern analysis of genes related to cold stress in Chinese cabbage (Brassica rapa ssp. pekinensis). B. rapa cold stress networks were constructed with 2,030 nodes, 20,235 edges, and 34 connected components. The analysis suggests that similar genes responding to cold stress may also regulate development of Chinese cabbage. Using this network model, it is surmised that cold tolerance is strongly related to activation of chitinase antifreeze proteins by WRKY transcription factors and salicylic acid signaling, and to regulation of stomatal movement and starch metabolic processes for systemic acquired resistance in Chinese cabbage. Moreover, within 48 h, cold stress triggered transition from vegetative to reproductive phase and meristematic phase transition. In this study, we demonstrated that this network model could be used to precisely predict the functions of cold resistance genes in Chinese cabbage.

Isolation and Characterization of Defense Genes Mediated by a Pathogen-Responsive MAPK Cascade in Tobacco (담배에서 병원균에 반응하는 MAPK 신호전달체계에 의해 매개되는 방어 유전자들의 분리 및 특성화)

  • Jang, Eun-Kyoung;Kang, Eun-Young;Kim, Young-Cheol;Cho, Baik-Ho;Yang, Kwang-Yeol
    • Journal of Life Science
    • /
    • v.18 no.8
    • /
    • pp.1023-1030
    • /
    • 2008
  • NtMEK2, which is the tobacco MAPK kinase that is upstream of SIPK and WIPK, was identified using the dexamethasone (DEX)-inducible gain-of-function transgenic system. Expression of $NtNEK2^{DD}$, a constitutively active mutant of NtNEK2, leads to HR-like cell death, which indicates that the NtMEK2-SIPK/WIPK cascade controls defense responses in tobacco. However, little is known about the downstream target substrates or defense-related genes that are regulated by the NtMEK2-SIPK/ WIPK cascade. In this study, ACP-based differential display RT-PCR was used to isolate the downstream effectors mediated by the NtMEK2-SIPK/WIPK cascade in $NtNEK2^{DD}$ transgenic plants. The results identified 6 novel differentially expressed genes (DEGs). These included pathogen induced protein 2-4 (pI2-4), monoterpene synthase 2 (MTS2), seven in absentia protein (SINA), cell death marker protein 1 (CDM1), hydroxyproline-rich glycoprotein (HRGP) and unknown genes (DEG45). The induction of these genes was confirmed by RT-PCR of samples obtained from $NtNEK2^{DD}$ plants. Additionally, when compared with other isolated DEGs, the pI2-4, CDM1 and HRGP genes were significantly up-regulated in response to treatment with salicylic acid and tobacco mosaic virus. Taken together, these results suggest that three novel DEGs were regulated by the NtMEK2-SIPK/WIPK cascade involved in disease resistance in tobacco.