• Title/Summary/Keyword: sagA

Search Result 560, Processing Time 0.028 seconds

Evaluation of Recombinant SAG1, SAG2, and SAG3 Antigens for Serodiagnosis of Toxoplasmosis

  • Khanaliha, Khadijeh;Motazedian, Mohammad Hossein;Kazemi, Bahram;Shahriari, Bahador;Bandehpour, Mojgan;Sharifniya, Zarin
    • Parasites, Hosts and Diseases
    • /
    • v.52 no.2
    • /
    • pp.137-142
    • /
    • 2014
  • Serologic tests are widely accepted for diagnosing Toxoplasma gondii but purification and standardization of antigen needs to be improved. Recently, surface tachyzoite and bradyzoite antigens have become more attractive for this purpose. In this study, diagnostic usefulness of 3 recombinant antigens (SAG1, SAG2, and SAG3) were evaluated, and their efficacy was compared with the available commercial ELISA. The recombinant plasmids were transformed to JM109 strain of Escherichia coli, and the recombinants were expressed and purified. Recombinant SAG1, SAG2, and SAG3 antigens were evaluated using different groups of sera in an ELISA system, and the results were compared to those of a commercial IgG and IgM ELISA kit. The sensitivity and specificity of recombinant surface antigens for detection of anti-Toxoplasma IgG in comparison with commercially available ELISA were as follows: SAG1 (93.6% and 92.9%), SAG2 (100.0% and 89.4%), and SAG3 (95.4% and 91.2%), respectively. A high degree of agreement (96.9%) was observed between recombinant SAG2 and commercial ELISA in terms of detecting IgG anti-Toxoplasma antibodies. P22 had the best performance in detecting anti-Toxoplasma IgM in comparison with the other 2 recombinant antigens. Recombinant SAG1, SAG2, and SAG3 could all be used for diagnosis of IgG-specific antibodies against T. gondii.

An Improvement in Synchronously Rotating Reference Frame-Based Voltage Sag Detection under Distorted Grid Voltages

  • Sillapawicharn, Yutthachai;Kumsuwan, Yuttana
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1283-1295
    • /
    • 2013
  • This study proposed an improvement in synchronously rotating reference frame-based voltage sag detection under distorted grid voltages. In the past, the conventional synchronously rotating reference frame (CSRRF)-based voltage sag detection was generally used in the voltage sag compensation applications. Its disadvantage is a long delay of detection time. The modified synchronously rotating reference frame (MSRRF)-based voltage sag detection is able to detect the voltage sag with only a short delay in detection time. However, its operation under distorted grid voltage conditions is unavailable. This paper proposed the improvement of modified synchronously rotating reference frame (IMSRRF)-based voltage sag detection for use in distorted grid voltages with very fast operation of voltage sag detection. The operation of the proposed voltage sag detections is investigated via simulations and experimentations to verify the performance of the IMSRRF-based voltage sag detection.

The influence of the pre-sag of a railway contact wire to the current collection performance (200km/h급 전차선로에서 사전이도가 미치는 집전성능 영향 분석연구)

  • Cho, Yong-Hyeon;Lee, Ki-Won;Park, Chan-Bae
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.227-235
    • /
    • 2007
  • The railway catenary is softer in the middle of a span than at the end. This stiffness variation induce the vertical motion of a moving pantograph, which results in the large variation of contact forces. To reduce the vertical motion of a pantograph, we can introduce a pre-sag of the contact wire. The pre-sag changes merely equilibrium position of the contact wire. Because the pantograph must follow the sag added to the motion of the contact wire, the sag gives downward forces to the pantograph. If the pre-sag is proper, the variation of the vertical motion of the pantograph is reduced. However, excessive sag worses the current collection performance because the pantograph receives too large downward forces by the contact wire. The objective of the paper is to establish the theoretical basis to understand how the pre-sag affect the contact force variation and to propose the proper sag for the railway catenary for the train speed up to 200 km/h.

  • PDF

Stochastic Method to Assess Voltage Sag Performance Considering Sag Duration in Large Power System (대규모 계통에서의 순간전압강하 지속시간을 고려한 추계적 평가 방법)

  • Lee, Myeong-Cheol;Park, Chang-Hyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.30 no.2
    • /
    • pp.85-92
    • /
    • 2016
  • The paper presents a method to assess system voltage sag performance considering sag durations as well as magnitudes. In general, voltage sag assessment for large power systems is performed only considering sag magnitudes at sensitive load points. However some equipment can be affected by certain sag durations. The duration of the voltage sag is depend on the time of fault current flow in the system. Therefore, the duration can be determined by analyzing the operating characteristic of the protection system. In this paper, an effective method to evaluate sag durations regarding the characteristics and failure rates of the protection system is described. The proposed method can be used to assess the long-term performance of the voltage sags in large power system.

A Study of Expanded Severity Index of Voltage Sag Using Fuzzy Clusterin (Fuzzy Clustering을 이용한 순간전압강하(Voltage Sag)의 확장된 심각도 지수(Expanded Severity Index) 연구)

  • Oh, Won-Wook;Kim, Yong-Su
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2011.01a
    • /
    • pp.81-84
    • /
    • 2011
  • 본 논문은 전압 이벤트 현상 중 순간전압강하(Sag) 현상에 초점을 맞추었다. Sag 현상의 심각한 정도를 표현하는 심각도(Voltage Sag Severity) 지수는 동일 지속시간에 대한 임계치와의 비로 표현하였다. 제안하는 확장된 심각도(Expanded Severity) 지수는 sag현상의 분포에 따른 일시반복성의 정보를 표현하였다. 기존의 임계치를 표현하는 ITIC curve를 기반으로 된 심각도와 sag 현상이 발생하는 지속시간-전압 그래프의 분포를 fuzzy clustering을 통하여 medoid를 측정하고, medoid의 심각도와 실제 임계치에 근접한 sag 지점의 심각도를 계산하여 비교하였다. 확장된 심각도 지수는 심각도가 높은 현상들과의 연계성을 나타내는 지수로 심각한 정도의 수치 정보 이외에 일시적인 현상인지 지속 반복적인 현상인지를 0과 1사이의 수치로 표현하였고, 실험을 통하여 입증하였다.

  • PDF

A New Characterizing Method for Non-Rectangular Sag (Non-Rectangular Sag를 고려한 새로운 Sag의 평가 방법)

  • Won, D.J.;Chung, I.Y.;Kim, J.M.;Ahn, S.J.;Moon, S.I.;Seo, J.C.;Choe, J.W.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.304-306
    • /
    • 2002
  • This paper presents a new method to characterize sag event. Power quality monitoring algorithm to analyze PQ problems is described. This paper shows that conventional characterizing method which makes use of only sag magnitude and sag duration has some limitations. It characterizes non-rectangular sag as more severe one. In addition, it can't count on voltage tolerance characteristics of each apparatus. In order to solve these problems, this paper present a new characterizing method and it properly characterizes non-rectangular sag considering the voltage tolerance characteristics.

  • PDF

Free vibration analysis of large sag catenary with application to catenary jumper

  • Klaycham, Karun;Nguantud, Panisara;Athisakul, Chainarong;Chucheepsakul, Somchai
    • Ocean Systems Engineering
    • /
    • v.10 no.1
    • /
    • pp.67-86
    • /
    • 2020
  • The main goal of this study is to investigate the free vibration analysis of a large sag catenary with application to the jumper in hybrid riser system. The equation of motion is derived by using the variational method based on the virtual work principle. The finite element method is applied to evaluate the numerical solutions. The large sag catenary is utilized as an initial configuration for vibration analysis. The nonlinearity due to the large sag curvature of static configuration is taken into account in the element stiffness matrix. The natural frequencies of large sag catenary and their corresponding mode shapes are determined by solving the eigenvalue problem. The numerical examples of a large sag catenary jumpers are presented. The influences of bending rigidity and large sag shape on the free vibration behaviors of the catenary jumper are provided. The results indicate that the increase in sag reduces the jumper natural frequencies. The corresponding mode shapes of the jumper with large sag catenary shape are comprised of normal and tangential displacements. The large sag curvature including in the element stiffness matrix increases the natural frequency especially for a case of very large sag shape. Mostly, the mode shapes of jumper are dominated by the normal displacement, however, the tangential displacement significantly occurs around the lowest point of sag. The increase in degree of inclination of the catenary tends to increase the natural frequencies.

Stand-Alone Type Single-Phase Fuel Cells Micro-Source with ac Voltage Compensation Capability (교류전압 보상 기능을 갖는 독립형 단상 연료전지 마이크로 소스)

  • Jung, Young-Gook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.1
    • /
    • pp.35-41
    • /
    • 2009
  • This paper proposes a stand alone type single-phase fuel cells micro-source with a voltage sag compensator for compensating the ac output voltage variations (sag or swell) of micro-source. The proposed micro-source is consist of a PEM(polymer electrolyte membrane) fuel cells simulator, a full bridge de converter, a 60Hz PWM(pulse width modulation) VSI(voltage source inverter), and a voltage sag compensator. Voltage sag compensator is similar to the configuration of hybrid series active power filter, and it is directly connected to micro-source through the injection transformer. Compensation algorithm of a voltage sag compensator adopts a single phase p-q theory. Effectiveness of the proposed the system is verified by the PSIM(power electronics simulation tool) simulation in the steady state and transient state which the proposed system is able to simultaneously compensate the harmonic current and source voltage sag or swell.

Development of a Method to Analyze Voltage Sag Monitoring Data (순간전압강하 모니터링 데이터 분석 방법)

  • Park, Chang-Hyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.4
    • /
    • pp.16-22
    • /
    • 2013
  • This paper presents a method to analyze the voltage sag data obtained from monitoring systems. In order to establish effective countermeasures against voltage sag problems, an assessment of the system performance with respect to voltage sags is needed. Generally, the average annual sag frequency can be estimated by using the recorded voltage sag events for several years. However, the simple average value can not give the information about the errors of estimation. Such an average estimation is not useful for establishing effective solutions for voltage sag problems. Therefore, this paper proposes an effective method based on the Interval Estimation method. The estimation of voltage sag frequency is performed by using the average frequency and Poisson probability model. The proposed method can give the expected annual sag frequency and upper one-sided bound frequency.

Method to Determine Areas of Vulnerability for Calculating Sag Cumulative Table and Sag Density Table (순간전압강하 누적 테이블 및 밀도 테이블 계산을 위한 취약지역 결정 방법)

  • Park, Chang-Hyun;Lee, Hansang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.6
    • /
    • pp.746-751
    • /
    • 2014
  • This paper presents a method to calculate a sag cumulative table and density table based on the area of vulnerability to voltage sags. The expected sag performance at sensitive load points can be easily assessed through the calculation of the sag cumulative table and density table. However, the calculation of the tables regarding large power systems is very difficult task. Therefore, an efficient method for calculating the tables is needed. In this paper, the improved method to determine the areas of vulnerability is addressed and the method to calculate the tables based on the area of vulnerability is also described. The proposed scheme can be efficiently used to assess the voltage sag performance at sensitive load points in large power systems.