• Title/Summary/Keyword: safety life cycle

Search Result 458, Processing Time 0.027 seconds

A Study on Identification of Hazards for Their Tracking and Management (안전성활동의 추적성을 위한 초기 위험원 도출 기법에 대한 연구)

  • Han, Chan-Hee;Lee, Young-Soo;Ahn, Jin;Cho, Woo-Sik
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1008-1015
    • /
    • 2007
  • The primary purpose of the safety management is to prevent the loss of lives or physical damages arising from potential hazards in the railroad signaling system. Since such potential hazards may occur at any time during the system life cycle from design and development to maintenance, safety management activities have to be continuously taken in the course of the system life cycle. The identification of potential hazards is the early step of the safety management. However, such identification activities have to be continued during the system life cycle. Further, they have to be closely linked with system functions to prevent functional problems. This study provides a systematic approach to identification of potential hazards for their tracking and management during the system life cycle to assure the identification and definition of the most appropriate hazards.

  • PDF

The Evaluation of Influence on the Life Cycle of Electro Sensitive Protective Equipment in Press (프레스용 감응식 안전장치의 수명 영향 평가)

  • 태순호;김용수;윤상용
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.2
    • /
    • pp.36-43
    • /
    • 2001
  • This study is intended to estimate influences upon life cycle of ESPE(Electro Sensitive Protective Equipment) which is kinds of commonly used in press in domestic industry. First the field survey is executed to workers and safety managers at work places. In the survey, the main primary factors influenced the lift cycle of ESPE were vibration due to overload work in workplace. Second, int results showed that 37$m/s^2$ acceleration in press work would lead to the life of 132 for 8 hours work per day. Therefore, the vibration of press inflicted significant effect on the lift of ESPE.

  • PDF

A Study on Safety Management System for Rolling Stock (철도차량 안전관리체계에 대한 연구)

  • Lee, Kwan-Sup
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.167-171
    • /
    • 2007
  • For ensuing rolling stock safety, it is necessary that safety management should be made systematically through its whole life cycle. That is to say, safety management activities for every steps of rolling stock life cycle should be defined, and the roles of managers such as executor, assessor, and certificator should be shared clearly. This paper defines the safety management activities based on IEC 62278, analyzing foreign and domestic safety regulation systems, and suggests the reformed safety management system for rolling stock in Korea

  • PDF

The Software Verification and Validation Tasks for a Safety Critical System in Nuclear Power Plants

  • Cheon Se Woo;Cha Kyung Ho;Kwon Kee Choon
    • International Journal of Safety
    • /
    • v.3 no.1
    • /
    • pp.38-46
    • /
    • 2004
  • This paper introduces the software life-cycle V&V (verification and validation) tasks for the KNICS (Korea nuclear instrumentation and control system) project. The objectives of the V&V tasks are mainly to develop a programmable logic controller (PLC) for safety critical instrumentation and control (I&C) systems, and then to apply the PLC to developing the prototype of an engineered safety features-component control system (ESF-CCS) in nuclear power plants. As preparative works for the software V&V, various kinds of software plans and V&V task procedures have been developed according to the software life-cycle management. A number of software V&V tools have been adopted or developed to efficiently support the V&V tasks. The V&V techniques employed in this work include a checklist-based review and inspection, a requirement traceability analysis, formal verification, and life-cycle based software testing.

Life Cycle Cost Analysis of Steel Bridges on Its Paint System during Safe Life Under (강교의 도장방식에 따른 안전수명간 생애주기비용분석)

  • Han, Sang-Chul;Kim, Eun-Kyum;Cho, Sun-Kyu
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.2
    • /
    • pp.63-68
    • /
    • 2002
  • Life Cycle Cost analysis technique is introduced to evaluate cost-effectiveness of two paint systems of steel bridges. The systems are a conventional paint system and a galvanized paint system. The all costs during safe lift such as initial cost repainting costs, disposal costs are considered for the lift cycle cost analysis. The NIST model is used and BridgeLCC 1.0 developed by the NST is utilized as the lift cycle cost analysis tool. It is concluded that, in spite of expensive initial cost, the durable paint system may be cost-effective compared with conventional paint system.

Application Guide of Reliability Maintainability and Availability (신뢰성, 보전성 및 가용성 적용 모델)

  • Choi, Sung-Woon
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2007.04a
    • /
    • pp.309-322
    • /
    • 2007
  • This paper shows application guide of dependability data from the field, life cycle costing, and maintainability. Moreover, this study introduces mathematical expressions and predictions for reliability, availability and maintainability. This paper also shows compliance test procedures for steady-state availability, and application of Markov techniques.

  • PDF

A Study on Safety Activity Process of Train Control System (Manual Based) (열차제어시스템 안전성활동 프로세스에 대한 연구(매뉴얼기반))

  • Han, Chan-Hee;An, Jin;Cho, Woo-Sic;Jung, Jae-Ok
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1084-1091
    • /
    • 2011
  • The primary purpose of the safety management is to prevent the loss of lives or physical damages arising from potential hazards in the railway signaling system. Since such potential hazards may occur at any time during the system life-cycle from design and development to maintenance, safety management activities have to be continuously taken in the course of the system life-cycle. In this paper, presented for Safety Activity Process. (Phase, Methods, Documentation)

  • PDF

Minimum Expected Life Cycle Cost Model for Optimal Seismic Design and Upgrading of Long Span PC Bridges (장대 PC교량의 최적 내진설계 및 성능개선을 위한 최소 기대 Life Cycle Cost 모델)

  • 조효남;임종권
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.04a
    • /
    • pp.305-312
    • /
    • 1999
  • This study is intended to propose a systematic and practical life cycle cost(LCC) model for the development of the reliability-based seismic safety and cost-effective performance criteria for design and upgrading of long-span PC bridges. The LCC models consist of five cost functions such as initial cost, repair/replacement cost, human losses, road user cost, and indirect losses of regional economy. The proposed model Is successfully expressed in temrs of Park-Ang damage indices and life cycle damage probability obtained from SMART-DRAIN-2DX which is an existing algorithm for nonlinear time history analysis. The proposed LCC model is successfully applied to a viaduct constructed by PSM, in Seoul. Based on the observations, the proposed systematic procedure for the formulation of LCC model may be useful for the development of the reliability-based seismic safety and cost-effective performance criteria for design and upgrading of long-span PC bridges.

  • PDF

Development of a framework for engineering RAMS into rolling stock through life cycle in the operator perspective (철도차량의 개발 및 운용을 위한 RAMS 관리 시스템 개발)

  • Park, Mun-Gyu;An, Min
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.2179-2194
    • /
    • 2010
  • RAMS is becoming increasingly important in the decision making process for the rolling stock projects in order to improve competitiveness by reducing system life cycle cost while improving reliability, availability, maintainability and safety. In order to apply and manage RAMS of rolling stock systems effectively in the operator perspective, it is essential to integrate and control RAMS systematically from the early stage of rolling stock projects. RAMS management is to implement a RAMS system into rolling stock projects in terms of a rolling stock operator, which presents the strategic directions of RAMS policy, objectives, requirements, control, analysis, measurement and improvement throughout life cycle of rolling stock projects. This article presents a new framework of RAMS management that provides an effective and efficient way for managing RAMS in rolling stock systems in the railway industry.

  • PDF