• Title/Summary/Keyword: safety facility cost

Search Result 144, Processing Time 0.022 seconds

Management of Spent Ion-Exchange Resins From Nuclear Power Plant by Blending Method

  • Kamaruzaman, Nursaidatul Syafadillah;Kessel, David S.;Kim, Chang-Lak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.1
    • /
    • pp.65-82
    • /
    • 2018
  • With the significant increase in spent ion-exchange resin generation, to meet the requirements of Waste Acceptance Criteria (WAC) of the Wolsong disposal facility in Korea, blending is considered as a method for enhancing disposal options for intermediate level waste from nuclear reactors. A mass balance formula approach was used to enable blending process with an appropriate mixing ratio. As a result, it is estimated around 44.3% of high activity spent resins can be blended with the overall volume of low activity spent resins at a 1:7.18 conservative blending ratio. In contrast, the reduction of high activity spent resins is considered a positive solution in reducing the amount of spent resins stored. In an economic study, the blending process has been proven to lower the disposal cost by 10% compared to current APR1400 treatment. Prior to commencing use of this blending method in Korea, coordinated discussion, and safety and health assessment should be undertaken to investigate the feasibility of fitting this blending method to national policy as a means of waste predisposal processing and management in the future.

A New Route Guidance Method Considering Pedestrian Level of Service using Multi-Criteria Decision Making Technique

  • Joo, Yong-Jin;Kim, Soo-Ho
    • Spatial Information Research
    • /
    • v.19 no.1
    • /
    • pp.83-91
    • /
    • 2011
  • The route finding analysis is an essential geo-related decision support tool in a LBS(Location based Services) and previous researches related to route guidance have been mainly focused on route guidances for vehicles. However, due to the recent spread of personal computing devices such as PDA, PMP and smart phone, route guidance for pedestrians have been increasingly in demand. The pedestrian route guidance is different from vehicle route guidance because pedestrians are affected more surrounding environment than vehicles. Therefore, pedestrian path finding needs considerations of factors affecting walking. This paper aimed to extract factors affecting walking and charting the factors for application factors affecting walking to pedestrian path finding. In this paper, we found various factors about environment of road for pedestrian and extract the factors affecting walking. Factors affecting walking consist of 4 categories traffic, sidewalk, network, safety facility. We calculated weights about each factor using analytic hierarchy process (AHP). Based on weights we calculated scores about each factor's attribute. The weight is maximum score of factor. These scores of factor are used to optimal pedestrian path finding as path finding cost with distance, accessibility.

Facilitating the Usage of Value Management Processes by Charactering Capital Facility Projects

  • Cha Hee Sung
    • Korean Journal of Construction Engineering and Management
    • /
    • v.5 no.2 s.18
    • /
    • pp.144-152
    • /
    • 2004
  • Defining value as a measure of how well the project value objectives are met, Value Management Process (VMP) is considered to be any management effort or process that can proactively pursue one or more project objectives (i.e., security/safety, cost effectiveness, schedule optimization, and risk containment). The collection of 44 VMPs has been established based on a rigorous effort conducted by Construction Industry Institute (CII). Because varying circumstances on each project determine the level of suitability, it is crucial to identify which VMP should be implemented on a particular project. The current VMP selection process is primarily based on human intuition. The main objective of this paper is to provide a systematic method to facilitate the usage of VMPs on a particular project. This paper identified and quantified the selection principles (i.e., targeted value objectives, timing of initiation, project characteristics, and relative impact). The data collected from industry practitioners and VMP experts characterized each VMP in terms of the magnitude of benefit. An automated selection tool by Visual Basic Application (VBA) on MS Excel TM, was developed and proved its validity. As a pioneering study, this paper provides a comprehensive and structured knowledge on the subject of VMPs. From the industry's perspective, the automated selection tool, the premier of this study, contributes the facilitation of the VMP implementations in the construction industry thereby maximizing the potential benefits to a particular project.

Feasibility study of a resistive-type sodium aerosol detector with ZnO nanowires for sodium-cooled fast reactors

  • Jewhan Lee;Da-Young Gam;Ki Ean Nam;Seong J. Cho;Hyungmo Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2373-2379
    • /
    • 2023
  • In sodium systems, leakage is one of the safety concerns; it can cause chemical reactions, which may result in fires. There are contact and non-contact types of leak detectors, and the conventional method of non-contact type detection is by gas sampling. Because of the complexity of this method, there has always been a need for a simple gas sensor, and the resistive-type nanostructure ZnO sensor is a promising option with various advantages. In this study, a ZnO sensor was fabricated, and the concept was tested as a leak detector using a dedicated experiment facility. The experiment results showed distinctive changes in resistance with the presence of sodium aerosol under various conditions. Replacing the conventional gas sampling with the ZnO sensors is expected to enable identification of the leakage location if used as a point-wise instrumentation and to greatly reduce the total cost, making the system simple, light, and effective. For further study, more tests will be performed to evaluate the sensitivity of key parameters under various conditions.

Comparative Analysis on Characteristics of Extrusion and Drawing for Monel Material of Special Alloy with Rectangular Bar in Elastic Limit (특수합금 사각봉 모넬 소재의 탄성영역 압출 및 인발 특성 비교 해석)

  • Young-Joon Yang
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.3
    • /
    • pp.573-580
    • /
    • 2024
  • Recently, the special alloy, for instance, such as Monel and Inconel, is used for valves, bolt/nuts, and fittings in semiconductor facility, FCEV(fuel cell electric vehicle) and hydrogen gas station, to reduce the hydrogen embrittlement. Even though the Monel material has high cost, it is recommended to use for the cases of ultra high pressure, ultra high leak-proof and so on. The purpose of this study is to investigate the characteristics of Monel material within elastic limit through the comparative analysis when Monel material is extruded or drawn. As the results, the deformation of Monel material was increased as the number of pass was increased, further, the deformation of Monel material by drawing was larger than that by extrusion. In the safety factor, the case that load is less than 420kN, the plastic deformation due to drawing could be happened faster than that due to extrusion. However, the case of more than 420kN, it showed that the plastic deformation for extrusion and drawing was almost similar.

Design and construction of fluid-to-fluid scaled-down small modular reactor platform: As a testbed for the nuclear-based hydrogen production

  • Ji Yong Kim;Seung Chang Yoo;Joo Hyung Seo;Ji Hyun Kim;In Cheol Bang
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.1037-1051
    • /
    • 2024
  • This paper presents the construction results and design of the UNIST Reactor Innovation platform for small modular reactors as a versatile testbed for exploring innovative technologies. The platform uses simulant fluids to simulate the thermal-hydraulic behavior of a reference small modular reactor design, allowing for cost-effective design modifications. Scaling analysis results for single and two-phase natural circulation flows are outlined based on the three-level scaling methodology. The platform's capability to simulate natural circulation behavior was validated through performance calculations using the 1-D system thermal-hydraulic code-based calculation. The strategies for evaluating cutting-edge technologies, such as the integration of a solid oxide electrolysis cell for hydrogen production into a small modular reactor, are presented. To overcome experimental limitations, the hardware-in-the-loop technique is proposed as an alternative, enabling real-time simulation of physical phenomena that cannot be implemented within the experimental facility's hardware. Overall, the proposed versatile innovation platform is expected to provide valuable insights for advancing research in the field of small modular reactors and nuclear-based hydrogen production.

Effectiveness of Positive Guidance for Speed Reduction at Signalized Intersection by Using Driving Simulator (도로주행시뮬레이터를 활용한 신호교차로 속도저감에 대한 Positive Guidance 효과 연구)

  • Noh, Kwan-sub;Lee, Jong-hak;Kim, Jong-min
    • International Journal of Highway Engineering
    • /
    • v.13 no.1
    • /
    • pp.59-67
    • /
    • 2011
  • It can prevent traffic accidents in a way as taking precautionary measures for road safety at signalized intersection in advance. Particularly, traffic accidents can be reduced at relatively low cost without redesigning alignments. That is 'Positive Guidance method' which can help prevent traffic accidents through improvement of road facilities at signalized intersection. In this study, potentially higher hazardous signalized intersection due to speeding was selected through site investigation. Field analysis at designated section was conducted and devised a plan for improvements of road facilities. Subjects drove in driving simulator in 3-D virtual reality of designated intersection. Based on data from simulator, statistical analysis(t-verification) was conducted for 'Before and After effectiveness' of speed reduction. As a result, it indicates that speed reduction was effective after improvements at each spot in driving simulator. In the future, hazardous signalized intersections which can be applied for PG method will be effective for road safety based on this research.

A Study for Improving the Vehicle Dismantling and Recycling System of Korea (한국의 자동차 해체·재활용 제도 개선 연구)

  • Lyou, Byung-Woon
    • Journal of Auto-vehicle Safety Association
    • /
    • v.8 no.4
    • /
    • pp.24-30
    • /
    • 2016
  • In Korea, the Vehicle Dismantler and Recycler industry is supervised by the Ministry of Land, Infrastructure and Transport under the Automobile Management Act. Also, Korean Automotive recycling businesses are supervised by the Minister of Environment under the Resource Recirculation Act. The main concern of the Minister of Environment is how the wastes from Dismantled vehicles will be environmentally removed, stored, treated, recycled or disposed. In 2000, the European Union (EU) adopted the End-of-Life Vehicles Directive (2000/53/EC) which required Members to ensure the collection, treatment and recovery of end-of-life vehicles (ELVs). The Directive, the most tightly regulated and precautionary legal systems, required that the last owner of a vehicle could drop off the ELV at an authorized treatment facility and that the producers of the ELV should pay the cost of the program. The adoption of the ELVs directive has led the development of Automotive Dismantler and Recycler networks to reuse, refurbish, remanufacture, recycle and recover parts and materials embedded in ELVs. Also, the ELVs directive which has had an insignificant impact on Korean manufacturers has strong presence in the European market and has been successfully externalized on them. The Korean manufacturers not only achieve the 85% recycling target set by the ELVs directive but also meet the Extended Producer Responsibility (EPR) which requires manufacturers to contribute dismantling process. In order to improve the Korean vehicle dismantling and recycling system, the Automobile Management Act and the Resource Recirculation Act should be harmonized. Particularly the roles of the Ministry of Land, Infrastructure and Transport and the Minister of Environment should be sharply divided. Like Japan, the ELV management needs to be highly centralized, regulated, and controlled by the ministry specialized in Vehicle, namely the Ministry of Land, Infrastructure and Transport and the sub organizations. Like EU Members, recovery, reuse, and recycling must be distinguished. Recovery is defined as the final productive use of the parts and materials embedded in ELVs, which includes reuse and remanufacture of parts and recycling of the other materials. Dismantling process and reuse and remanufacture of parts must be governed by the Ministry of Land, Infrastructure and Transport. For environmental recycling or disposal of waste materials, such as CFCs, glass and plastic material, and toxic substances, governmental financial support system should be in place.

On Enhancing Safety of Train-Centric Train Control System using Model-Based Development (차상중심 열차제어시스템 개발에서 모델기반 접근을 통한 안전성 향상에 관한 연구)

  • Choi, Myung-Sung;Kim, Joo-Uk;Han, Seok-Youn;Oh, Se-Chan;Sim, Sang-Hyun;Lee, Jae-Chon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.573-584
    • /
    • 2016
  • The train control system is a facility to ensure model-based design and safe train operation, and its safety is the most important factor for system introduction, complexity of the design information and traceability etc. Therefore, the model-based design and safety activities regarding the way-side equipment of a train control system is also highlighted. To solve this problem, In this paper, model-based design was carried out first to develop an effective train control system, which is represented by SysML(System Modeling Language). The test scenarios that can take advantage of the design model were created to improve the train safety control system. Case studies of a model-based design of a train-centric train control system were applied to the test scenarios; the results demonstrated its usability. The improved activity over the test highlighted the safety improvement approach, and it is expected to reduce the cost and time in the conceptual design of a future development model-based train control system.

Development of the Compressed Packer Grouting Device for Preventing the Inflow of Polluted Groundwater (오염지하수 유입방지를 위한 압축패커 그라우팅 장치 개발)

  • Cho, Heuy-Nam;Choi, Sang-Il
    • The Journal of Engineering Geology
    • /
    • v.19 no.4
    • /
    • pp.433-439
    • /
    • 2009
  • The compressed packer device is designed to improve the underground contamination prevention facilities of ground water wells. As for the device, the installation is simple because of the safety lock device and the compression of the casing are simple the installation is simple. There is no leakage of ground water because the pressure resistance with $4.5\;kg/cm^2$ makes it equipped with the watertightness The single casing is installed and the reaming for grouting is possible with 300 mm excavation so that installation cost can be saved. Silicon rubber is used for the compressed packer so that the extension rate is 590%. In terms of environmental pollution, it is an environmental friendly product which does not contain harmful ingredients such as Pb, Cd, and phenol. below the standard or undetectable level Furthermore, the installation costs are 35 to 62% or lower than the conventional grouting construction method and are 87% or lower than the expansion packer construction method, the new environmental technology No.47 Also, the device is designed to meet the relevant regulations such as Rules on Preserving the Ground Water Quality, The Standard on Jeju Island Ground Water Development and Facility Installation and Management, and The Plan and Guideline on Operating and Managing the Small-Scale Tap Water Facilities of Ministry of Environment and Ministry of Food, Agriculture, Forestry and Fisheries.