• Title/Summary/Keyword: safety design and operation

Search Result 997, Processing Time 0.031 seconds

A Study of a Dike Design Considering a Leakage Velocity at an Opening Hole in Case of a Leakage Accident (누출사고 시 저장탱크 위험물 누출속도를 고려한 방유제 설계에 관한 연구)

  • Lee, Jae Yeol;Kim, Dong Hyun;Ban, Soon Hee;Lee, Chang Jun
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.6
    • /
    • pp.40-45
    • /
    • 2017
  • Chemical accidents generated during maintenance, repair, and normal operation, such as dispersion, fire, and explosions, can cause massive losses like a 2012 hydro fluorine leak in Gumi, South Korea. Since this accident, many researches have studied physical mitigation systems. However, due to many difficulties including potential costs and lack time, it is really hard for many companies to install mitigation systems without prior knowledge. Thus, the efficacy of mitigation system should be evaluated. This study assesses a dike design considering the fluid velocity at an open hole when a leakage accident occurs. It is assumed that leakage materials follow a free fall motion. Throughout case studies, a current KOSHA guide for a dike design was evaluated and new guidelines handling various conditions were proposed.

Allocation of Design Assurance Level for KASS Based on International Standards (국제표준에 기반한 KASS 개발보증레벨 할당)

  • Bae, Dong-hwan
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • Since 2014, MOLIT (Ministry of Land, Infrastructure, and Transport) is carrying out a KASS project to develop and construct Korean SBAS. KASS can cause damage of human & properties if it has some problem during operation. Therefore, system safety assessment for KASS development is very important. Principal point of system safety assessment is the allocation of DAL(design assurance level) based on the hazard identification and classification. In this parer, the author conducts the allocation of DAL for KASS & its sub-systems based on the international standard(SAE ARP4761), which suggests a best practice of aviation system safety assessment. The result of this paper are the first step of system safety assessment, and can be used for further system safety assessment of KASS project.

Analysis of Crane Accidents by Using a Man-Machine System Model (인간-기계 시스템 모델에 의한 크레인 사망재해 분석)

  • Park, Jae-Hee;Park, Tae-Joo;Lim, Hyun-Kyo;Seo, Eun-Hong
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.2 s.80
    • /
    • pp.59-66
    • /
    • 2007
  • As the need of handling heavy materials increases, various cranes are used in industries. However, the effectiveness of crane also entails industrial accidents such as falling, constriction etc. In fact, the number of fatal accidents caused by crane is still high in Korea. To find out the causes of the accidents in terms of human error, we developed a man-machine system model that consists of two axes; human information processing and crane life cycle. In the human information processing dimension, we simplified it as five functions; sensing and perception, decision making and memory, response etc. In the crane life cycle dimension, we divided it into nine phases; design, production, operation etc. For the 152 fatal accident records during 1999-2006 years, we classified them into 45 cells made by two axes. Then we identified the preceding causes of the classified crane accident based on performance shaping factors. As the results of statistical analysis, the overall trend of crane fatal accidents was described. For the cause analysis, wrong decision making in work plan phase shows the highest frequency. Next, the poor information input in crane operation followed in accident frequency. In ergonomics view, the problems of interface design in displays and controls made 11.8% of fatal accidents. Following the analysis, several ergonomic design guidelines to prevent crane accidents were suggested.

A Study on the Development of Facility Model for Safety Training Class in School (학교 내 안전체험교실의 시설모형 개발 연구)

  • Park, Sung-Chul;Ahn, Yoo-Jeong;Song, Byung-Joon;Cho, Jin-ll
    • The Journal of Sustainable Design and Educational Environment Research
    • /
    • v.16 no.2
    • /
    • pp.19-33
    • /
    • 2017
  • The purpose of this study is to derive education programs for safety training class, create unit spaces and present components and methods of utilizing the spaces for the development of facilities models closely related to various policy, operation plan and facility construction projects promoted by related institutions such as the Ministry of Education, schools, architects and companies. This study is divided into five steps. First, we reviewed the literature related basic directions for safety education and facility plan, second, field survey included both field conditions such as spatial size and facility configuration and analysis of operating conditions like hours of operation and personnel. Base on literature review and field survey, it were used to analyze strengths and weaknesses of existing safety training classes, and five facility models was developed based on the Delphi method and expert participatory design. The result show that the facility models (drafts) of safety training class were developed as follows: (1)the facility model for traffic safety(pedestrian safety, vehicle safety, subway safety) (2)the facility model for first aid(emergency rescue, how to report) (3)the facility model for disaster safety(fire evacuation safety, life earthquake safety) (4)the facility model for elevator safety(elevator safety, escalator safety) (5)the facility model for drugs and violence safety (smoking drinking, sexual harassment safety, food safety) The safety training class can be composed by combining or separating each module according to affordable space size of each school.

Implementation of Main Computation Board for Safety Improvement of railway system (철도시스템의 안전성 향상을 위한 주연산보드 구현)

  • Park, Joo-Yul;Kim, Hyo-Sang;Lee, Joon-Hwan;Kim, Bong-Taek;Chung, Ki-Seok
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1195-1201
    • /
    • 2011
  • Since the release of safety standard IEC 61508 which defines functional safety of electronic safety-related systems, SIL(Safety Integrity Level) certification for railway systems has gained lots of attention lately. In this paper, we propose a new design technique of the computer board for train control systems with high reliability and safety. The board is designed with TMR(Triple Modular Redundancy) using a certified SIL3 Texas Instrument(TI)'s TMS570 MCU(Micro-Controller Unit) to guarantee safety and reliability. TMR for the control device is implemented on FPGA(Field Programmable Gate Array) which integrates a comparator, a CAN(Controller Area Network) communication module, built-in self-error checking, error discriminant function to improve the reliability of the board. Even if a malfunction of a processing module occurs, the safety control function based on the proposed technique lets the system operate properly by detecting and masking the malfunction. An RTOS (Real Time Operation System) called FreeRTOS is ported on the board so that reliable and stable operation and convenient software development can be provided.

  • PDF

HTGR PROJECTS IN CHINA

  • Wu, Zongxin;Yu, Suyuan
    • Nuclear Engineering and Technology
    • /
    • v.39 no.2
    • /
    • pp.103-110
    • /
    • 2007
  • The High Temperature Gas-cooled Reactor (HTGR) possesses inherent safety features and is recognized as a representative advanced nuclear system for the future. Based on the success of the HTR-10, the long-time operation test and safety demonstration tests were carried out. The long-time operation test verifies that the operation procedure and control method are appropriate for the HTR-10 and the safety demonstration test shows that the HTR-10 possesses inherent safety features with a great margin. Meanwhile, two new projects have been recently launched to further develop HTGR technology. One is a prototype modular plant, denoted as HTR-PM, to demonstrate the commercial capability of the HTGR power plant. The HTR-PM is designed as $2{\times}250$ MWt, pebble bed core with a steam turbine generator that serves as an energy conversion system. The other is a gas turbine generator system coupled with the HTR-10, denoted as HTR-10GT, built to demonstrate the feasibility of the HTGR gas turbine technology. The gas turbine generator system is designed in a single shaft configuration supported by active magnetic bearings (AMB). The HTR-10GT project is now in the stage of engineering design and component fabrication. R&D on the helium turbocompressor, a key component, and the key technology of AMB are in progress.

Establishment of Document Control System for the Jordan Research and Training Reactor Project (요르단연구로건설사업 문서관리시스템 구축)

  • Park, Kook-Nam;Ko, Young-Cheol;Wu, Sang-Ik;Oh, Soo-Youl;Lee, Doo-Jeong
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.34 no.4
    • /
    • pp.49-56
    • /
    • 2011
  • The Project of Jordan Research and Training Reactor (JRTR) officially launched in Aug. 2010. JRTR is the first made-in-Korea nuclear system to be built abroad by year 2015, and Korea Atomic Energy Research Institute (KAERI) is responsible for the design of major systems including the reactor core. While the PDCS (Project Document Control System) being operated by EPC company controls all the documents of the whole Project, KAERI is supposed to have its own system for KAERI documents. Meeting such a need; KAERI has implemented a document control for the JRTR Project into already existing ANSIM (KAERI Advanced Nuclear Safety Information Management) system. The documents of JRTR project to be controlled are defined in the PPM (Project Procedures Manual), QAP (Quality Assurance Procedure) and PEP (Project Execution Program). The ANSIM consists of the document management holder, document container holder and organization management holder. The document management holder, which is the most important part of ANSIM-JRTR, consists of the DDA (Document Distribution for Agreement), IOC (Inter-office Correspondence), PM Memo. (Project Manager Memorandum) and cover sheets of design documents. Other materials such as meeting minutes, sub-department materials and design information materials are stored in an independent COP (Community of Practice). This established computerized document control system, ANSIM, could lessen a burden for project management team and enhance the productivity as well.

Vessel failure sensitivities of an advanced reactor for SBLOCA

  • Jhung, Myung Jo;Oh, Chang-Sik;Choi, Youngin;Kang, Sung-Sik
    • Nuclear Engineering and Technology
    • /
    • v.52 no.1
    • /
    • pp.185-191
    • /
    • 2020
  • Plant-specific analyses of an advanced reactor have been performed to assure the structural integrity of the reactor pressure vessel during transient conditions, which are expected to initiate pressurized thermal shock (PTS) events. The vessel failure probabilities from the probabilistic fracture mechanics analyses are combined with the transient frequencies to generate the through-wall cracking frequencies, which are compared to the acceptance criterion. Several sensitivity analyses are performed, focusing on the orientations and sizes of cracks, the copper content, and a flaw distribution model. The results show that the integrity of the reactor vessel is expected to be maintained for long-term operation beyond the design lifetime from the PTS perspective using the design data of the advanced reactor. Moreover, a fluence level exceeding 9×1019 n/㎠ is found to be acceptable, generating a sufficient margin beyond the design lifetime.

Development of Probabilistic Fatality Estimation Code for Railway Tunnel Fire Accidents (철도터널 화재시 승객 생존율 예측을 위한 확률론적 평가코드 개발연구)

  • 곽상록
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.445-450
    • /
    • 2004
  • Tunnel fire accident is one of the critical railway accidents, together with collision and derailment. For the safe operation many tunnel design guidelines are proposed but many Korean railway tunnels do not satisfy these guidelines. For the safety improvement, current safety level is estimated in this study. But so many uncertainties in major input parameters make the safety estimation difficult. In this study, probabilistic techniques are applied for the consideration of uncertainties in major input parameters. As results of this study, probabilistic safety estimation code is developed.

  • PDF

The Functional Analysis of Automatic Train Operation(ATO) used by System Engineering Design Tool (전산지원도구를 이용한 자동열차제어장치의 기능분석 연구)

  • Lee, Woo-Dong
    • Proceedings of the KIEE Conference
    • /
    • 2005.10c
    • /
    • pp.299-301
    • /
    • 2005
  • The urban transit system is operated by driverless and automatic.In driverless and automatic system, the system function is accomplished exactly to obtain the safety and reliability of system and the system is designed to minimize risk. In order to design the system, the functional analysis is performed. Recently functional analysis is performed by design toolwhich is used and verified by aerospace, military, etc. Generally, the design tool is used to perform functional analysis in urban transit system development project. The design toolassist the system engineer to analysis the function of system in basic design. Therefore, In this paper, it is performed the functional analysis to satisfy the system requirement of urban transit system and to confirm the operation of system using design tool.

  • PDF