• Title/Summary/Keyword: safety depth

Search Result 1,401, Processing Time 0.025 seconds

Inundation Simulation of Underground Space using Critical Dry Depth Scheme (임계 마름 수심기법을 이용한 지하공간 침수 모의)

  • Rhee, Dong Sop;Kim, Hyung-Jun;Song, Chang Geun
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.6
    • /
    • pp.63-69
    • /
    • 2015
  • In this study, a 2D hydrodynamic model equipped with critical dry depth scheme was developed to reproduce the flow over staircase. The channel geometry of hydraulic experiment conducted by Ishigaki et al. was generated in the computational space, and the developed model was validated against flow properties such as discharge, velocity and momentum. In addition, the water surface profile and the velocity distribution evolved in flow over two layers staircases were analyzed. When the initial water depth at the upper floor was 0.3 m, the maximum velocity at lower floor was 4.2 m/s, and the maximum momentum was $1.2m^3/s^2$, and its conversion to force per unit width was 1.2 kN/m. This value was equivalent to the hydrostatic force with 50 cm water depth, and evacuation became difficult, as proposed by Ishigaki et al. For the flow over staircases connecting two layers, the maximum run-up height in flat part connecting two layers was approximately two times higher than the initial water depth in upper floor, and the rapid shock wave with sharp front and long tail was propagated.

A Study on the Slope Stability of Embankment in Consideration of Seismic Coefficient (지진계수를 고려한 제방의 사면안정에 관한 연구)

  • 강우묵;지인택;이달원
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.33 no.4
    • /
    • pp.105-120
    • /
    • 1991
  • This study was performed to investigate the minimum safety factor of embankment in consideration of seismic coefficient by the psuedo-static analysis The variables were cohesion, the internal friction angle, angle of slope, height of seepage, height of embankment, depth of replacement The results obtained were compared with those by Fellenius method, simplified Bishop method and Janbu method. The results were summarized as follows: 1.The increasing rate of the minimum safety factor with the increasing of cohesion appeared larger in Fellenius method and Bishop method than in Janbu method. And that with the increasing of the internal friction angle appeared the lowest value in Janbu method. The minimum safety factor was influenced larger on the internal friction angle than on cohesion. 2.The variation of the minimum safety factor with the height of seepage at 0m and 5 m was nearly similar to Fellenius method, Bishop method and Janbu method. On the other hand, it was decreased suddenly at 25 m. 3.The minimum safety factor with the height of embankment was decreased remarkably under 10 m with the increasing of seismic coefficient. But, it was decreased slowly more than 10 m. As the height of embankment was low, the influence of cohesion appeared larger. 4.In heigher case of the depth of replacement, the phenomenon of reduction of the minimum safety factor appeared remarkably with seismic coefficient increased. And in lower case of the depth of replacement, the minimum safety factor was similar in Fellenius method and Bishop mehtod. But it appeared larger in Bishop method and Janbu method than in Fellenius method with the depth of replacement increased. 5.As the cohesion and the internal friction angle were large, the phenomenon of reduction of the minimum safety factor with the increasing of seismic coefficient appeared remarkably. Also, the influence of seismic coefficient in minimum safety factor appeared larger with the soil parameter increased. 6.When the seismic coefficient was considerated, investigation of the structural body on the slope stability appeared profitably in Fellenius method and Janbu method than in Bishop method.

  • PDF

Experimental Studies on Eye Injury Risks by Different BB Pellet Materials (BB Pellet 재질에 따른 안구 손상 위험성에 관한 실험적 연구)

  • Kim, Hyung-Suk;Park, Dal-Jae
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.2
    • /
    • pp.20-24
    • /
    • 2012
  • Experimental studies were performed to investigate the eye injury risks by different BB pellet materials. Four different BB pellet materials were used: plastic (P), silicon (S), rubber (R) and plastic covered with silicon (SR). The BB pellet images penetrating into the gelatine simulant were recorded by a high-speed video camera. The results obtained from the different pellet materials were discussed in terms of impact velocity and penetration depth; threshold velocity and projectile sectional density; eye injury risks by normalized energies. It was found that the P pellets caused higher impact velocity while the lower was SR pellets. The penetration depth and threshold velocity of the pellets were dependent on the impact velocity of the pellets, and the P pellets resulted in the higher eye injury risk while the lower was SP.

Review of Non-Contact Concrete Damage Depth Estimation Technique Based on High-Power Pulsed Laser (고출력펄스 레이저 기반 비접촉 콘크리트 열화깊이 추정 기법 검토)

  • Choe, Gyeong-Cheol;Kim, Hong-Seop;Jeon, Jun-Seo;Kim, Eun-Young;Lee, Mun-Hwan
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.267-268
    • /
    • 2023
  • Out of an estimated 7 million buildings nationwide, approximately 38% of them have been standing for over 30 years, and this number is expected to continue to increase. Additionally, due to the Building Act, safety inspections will be mandatory for approximately 70,000 buildings annually, leading to an increase in demand for building safety inspections. However, the current building safety diagnosis heavily relies on manpower, making it difficult to diagnose locations that are hard to access, and requiring lengthy investigation periods. Therefore, this paper presents the basic research results of a non-contact concrete damage depth estimation technique using laser technology aimed at remote building safety diagnosis and shortening investigation periods.

  • PDF

A Study on the Bending Fatigue Strength of Sintering Spur Gear (소결치차의 피로강도에 관한 연구)

  • 류성기;김경모
    • Journal of the Korean Society of Safety
    • /
    • v.9 no.3
    • /
    • pp.28-33
    • /
    • 1994
  • It is very important to have exact informations on the properties and characteristics of the sintering material as a new material of machine elements. To study the sintering spur gear and the sintering specimen to be consisted of Fe-Cu-C, the constant stress amplitude fatigue test is performed by using an electrohydrolic survo-controlled pulsating tester. Consequently, the S-N curves are obtained and the fatigue strength is compared with flaw depth. Accordingly, this study presents the fatigue strength of sintering spur gears, the critical notch depth of sintering materials and the effects of flaw depth on the bending fatigue strength.

  • PDF

Evaluation of Leak Probability in Pipes using P-PIE Program (P-PIE 프로그램을 이용한 배관에서의 누설확률 평가)

  • Park, Jai Hak;Shin, Chang Hyun
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.6
    • /
    • pp.1-8
    • /
    • 2017
  • P-PIE is a program developed to estimate failure probability of pipes and pressure vessels considering fatigue and stress corrosion crack growth. Using the program, crack growth simulation was performed with an initially existing crack in order to examine the effects of initial crack depth distribution on the leak probability of pipes. In the simulation stress corrosion crack growth was considered and several crack depth distribution models were used. From the results it was found that the initial crack depth distribution gives great effect on the leak probability of pipes. The log-normal distribution proposed by Khaleel and Simonen gives lower leak probability compared other exponential distribution models. The effects of the number and the quality of pre-service and in-service inspections on the leak probability were also examined and it was recognized that the number and the quality of pre-service and in-service inspections are also give great effect on the leak probability. In order to reduce the leak probability of pipes in plants it is very important to improve the quality of inspections. When in-service inspection is performed every 10 years and the quality of inspection is above the very good level, the leak probability shows nearly constant value after the first inspection for an initially existing crack.

A New Approach to Selection of Inspection Items using Risk Insight of Probabilistic Safety Assessment for Nuclear Power Plants

  • Park, Younwon;Kim, Hyungjin;Lim, Jihan;Choi, Seongsoo
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.14 no.2
    • /
    • pp.49-58
    • /
    • 2018
  • The regulatory periodic inspection program (PSI) conducted at every overhaul period is the most important process for confirming the safety of nuclear power plants. The PSI for operating nuclear power plants in Korea mainly consist of component level performance check that had been developed based on deterministic approach putting the same degree of importance to all the inspection items. This inspection methodology is likely to be effective for preoperational inspection. However, once the plant is put into service, the PSI must be focused on whether to minimize the risk of accident using defense-in-depth concept and risk insight. The incorporation of defense-in-depth concept and risk insight into the deterministic based safety inspection has not been well studied so far. In this study, two track approaches are proposed to make sure that core damage be avoided: one is to secure success path and the other to block the failure path in a specific event tree of PSA. The investigation shows how to select safety important components and how to set up inspection group to ensure that core damage would not occur for a given initiating event, which results in strengthening defense-in-depth level 3.

Free Vibration Analysis of Perforated Rectangular Plates Submerged in Fluid (유체에 잠긴 다공 직사각평판의 고유진동 해석)

  • 유계형;권대규;정경훈;이성철
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.1
    • /
    • pp.19-27
    • /
    • 2003
  • This paper presented an experimental modal analysis of clamped perforated rectangular plates submerged in water. The penetration of holes in the plates had a triangular pattern with P/D (pitch to diameter) 1.750, 2.125, 2.500, 3.000 and 3.750. The natural frequencies of the perforated plates in air were obtained by the Rayleigh-Ritz method and compared with the experimental results. Good agreement was obtained between the analytical solution and experimental result. The experimental results in water showed that the mode shapes are not sensitive to the depth of submergence. The natural frequencies were shown to decrease drastically once the perforated plates come in contact with water. However, the natural frequencies decrease with the depth of submergence until a certain depth is reached, and become the asymptotic values beyond this depth of submergence. The depth of submergence did not affect the damping ratio greatly.

Experimental Study on Local Scour around Bridge Piers by Scour Protection Devices (세굴보호장치에 의한 교각주위의 국부세굴 실험)

  • 최기봉;김응용
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.1
    • /
    • pp.126-131
    • /
    • 2000
  • This study based on the laboratory works, analyzes factors affecting local scour in order to understand various characteristics of the local scour surrounding bridge piers. Attached with scour protection device as a method for decreasing local scour, it carries out the laboratory experiments and calculates the scour depth. From the experiments attached with the scour protection devices, it seems possible to reduce the scour depth as the protecting plate, column and sacrificial piles are built in the same height with flume bed at pier or footing upstream interrupted falling-flow. And then it could reduce scour depth. The paper presents the following research results: First, the decreasing degree of scour depth is in order of protecting column, protecting plate, sacrificial piles and non-protecting facilities. However, it shows no meaningful difference between protecting column and protecting plate. Second, when $L_p/b$=0.5~1, the decreasing effect of scour depth reached the maximum of 40 percents.

  • PDF