• Title/Summary/Keyword: sacrificial layer

Search Result 93, Processing Time 0.033 seconds

Effect of Etch Hole Position and Sacrificial Layer Residue on a Novel Half-Coaxial Transmission Line Filter (에치홀의 위치와 희생층의 잔류물이 전송선 필터 응답에 미치는 영향)

  • Kim, Yong-Sung;Baek, Chang-Wook;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.284-285
    • /
    • 2007
  • In this paper, we present the effect on a novel transmission line filter response by the etch hole position on the suspended ground and the residue on the resonator under ground plane. We defined the etch hole offset as the distance from the sidewall of the suspended ground to the nearest side of the etch holes. We simulated new filter responses to reflect the real value of the changed etch hole offset caused by characteristics of negative photoresist. Return loss is distorted by the residue on the center conductor remained after sacrificial layer removing. By comparison of simulation and measurements, we concluded the residue on the resonator distorted the RF response worse than etch hole offset variation did.

  • PDF

Electrochemical Characteristics of Arc Zn Thermal Spray Coating Layer in Sea Water (해수 내 아크 아연 용사코팅 층의 전기화학적 특성)

  • Park, Il-Cho;Seo, Gwang-Cheol;Lee, Gyeong-Woo;Kim, Seong-Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.6
    • /
    • pp.343-348
    • /
    • 2015
  • In this paper, arc Zn thermal spray coating was carried out on the SS400 steel, and then various electrochemical characteristics and surface damage behavior of Zn thermal spray coating layer were analyzed. As the results, the potential of Zn thermal spray coating layer presented driving voltage above 300 mV compare to that of SS400 steel. The passivity characteristic in anodic polarization curve was not presented. It was adequate to as sacrificial anode material. In the surface damage after galvanostatic experiments, uniform corrosion tendency of Zn thermal spray coating layer was clearly observed with acceleration of the dissolution reaction. In conclusion, Zn thermal spray coating could be determined to represent the corrosion protection effect by stable sacrificial anodic cathodic protection method in seawater because it had sufficient driving voltage and uniform corrosion damage tendency for the SS400 steel.

Fabrication of Nickel Oxide Film Microbolometer Using Amorphous Silicon Sacrificial Layer (비정질 실리콘 희생층을 이용한 니켈산화막 볼로미터 제작)

  • Kim, Ji-Hyun;Bang, Jin-Bae;Lee, Jung-Hee;Lee, Yong Soo
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.6
    • /
    • pp.379-384
    • /
    • 2015
  • An infrared image sensor is a core device in a thermal imaging system. The fabrication method of a focal plane array (FPA) is a key technology for a high resolution infrared image sensor. Each pixels in the FPA have $Si_3N_4/SiO_2$ membranes including legs to deposit bolometric materials and electrodes on Si readout circuits (ROIC). Instead of polyimide used to form a sacrificial layer, the feasibility of an amorphous silicon (${\alpha}-Si$) was verified experimentally in a $8{\times}8$ micro-bolometer array with a $50{\mu}m$ pitch. The elimination of the polyimide sacrificial layer hardened by a following plasma assisted deposition process is sometimes far from perfect, and thus requires longer plasma ashing times leading to the deformation of the membrane and leg. Since the amorphous Si could be removed in $XeF_2$ gas at room temperature, however, the fabricated micro-bolomertic structure was not damaged seriously. A radio frequency (RF) sputtered nickel oxide film was grown on a $Si_3N_4/SiO_2$ membrane fabricated using a low stress silicon nitride (LSSiN) technology with a LPCVD system. The deformation of the membrane was effectively reduced by a combining the ${\alpha}-Si$ and LSSiN process for a nickel oxide micro-bolometer.

DLC Structure Layer for Piezoelectric MEMS Switch (압전 MEMS 스위치 구현을 위한 DLC 구조층에 관한 연구)

  • Hwang, Hyun-Suk;Lee, Kyong-Gun;Yu, Young-Sik;Lim, Yun-Sik;Song, Woo-Chang
    • Journal of Satellite, Information and Communications
    • /
    • v.6 no.1
    • /
    • pp.28-31
    • /
    • 2011
  • In this paper, a new set of structural and sacrificial material that is diamond like carbon (DLC)/photoresist for high performance piezoelectric RF-MEMS switches which are actuated in d33 mode is suggested. To avoid curing problem of photoresist sacrificial layer, DLC structure layer is deposited at room temperature by radio frequency plasma enhanced chemical vapor deposition (RF-PECVD) method. And lead zirconate titanate (PZT) piezoelectric layer is deposited on structure layer directly at room temperature by rf magnetron sputtering system and crystallized by rapid thermal annealing (RTA) equipment. Particular attention is paid to the annealing of PZT film in order to crystallize into perovskite and the variation of mechanical properties of DLC layer as a function of annealing temperature. The DLC layer shows good performance for structure layer in aspect to Young's modulus and hardness. The fabrication becomes much simpler and cheaper with use of a photoresist.

Development of capacitive Micromachined Ultrasonic Transducer (II) - Analysis of Microfabrication Process (미세가공 정전용량형 초음파 탐촉자 개발(II) - 미세공정기술 분석)

  • Kim, Ki-Bok;Ahn, Bong-Young;Park, Hae-Won;Kim, Young-Joo;Kim, Kuk-Jin;Lee, Seung-Seok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.6
    • /
    • pp.573-580
    • /
    • 2004
  • The main goal of this study was to develop a micro-fabrication process for the capacitive micromachined ultrasonic transducer (cMUT). In order to achieve this goal, the former research results of the micro-electro-mechanical system (MEMS) process for the cMUT were analyzed. The membrane deposition, sacrificial layer deposition and etching were found to be a main process of fabricating the cMUT. The optimal conditions for those microfabrication were determined by the experiment. The thickness, uniformity, and residual stress of the $Si_3N_3$ deposition which forms the membrane of the cMUT were characterized after growing the $Si_3N_3$ on Si-wafer under various process conditions. As a sacrificial layer, the growth rate of the $SiO_2$ deposition was analyzed under several process conditions. The optimal etching conditions of the sacrificial layer were analyzed. The microfabrication process developed in this study will be used to fabricate the cMUT.

Corrosion Resistance Evaluation of Aluminum Thermal Spray Coated AA5083-H321 (알루미늄 열용사 코팅된 AA5083-H321의 내식성 평가)

  • Il-Cho Park;Sungjun Kim;Min-Su Han
    • Corrosion Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.108-114
    • /
    • 2023
  • In this study, anti-corrosion effect was investigated through various electrochemical experiments after applying Al thermal spraying technology to AA5083-H321. Open circuit potential and anodic polarization curves were analyzed through electrochemical experiments in natural seawater. The shape of the surface was observed using a scanning electron microscope (SEM) and a 3D microscope before and after the experiment. Component and crystal structure were analyzed through EDS and XRD. As a result, the surface roughness of AA5083-H321 and the Al thermal sprayed coating layer increased due to surface damage caused by anodic dissolution reaction during the anodic polarization experiment. The corrosion rate of AA5083-H321 was relatively low because the Al thermal spray coating layer contained structural defects such as pores and crevices. Nevertheless, the open circuit potential of the Al thermal spray coating layer in natural seawater was measured about 0.2 V lower than that of AA5083-H321. Thus, a sacrificial anode protection effect can be expected.

Wet Etch Process for the Fabrication of Al Electrodes and Al Microstructures in Surface Micromachining (표면 미세가공에서 Al 전극 및 Al 미세 구조물 제작을 위한 습식 식각 공정)

  • Kim, Sung-Un;Paik, Seung-Joon;Lee, Seung-Ki;Cho, Dong-Il
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.224-232
    • /
    • 2000
  • Aluminum metal process in surface micromachining enables to fabricate Al electrodes or Al structures, which improve electrical characteristics by reducing contact- and line-resistance or makes the whole process to be simple by using oxide as sacrificial layer. However, it is not possible to use conventional sacrificial layer etching process, because HF solution attacks aluminum as well as sacrificial oxide. The mixed solution of BHF and glycerine as an alternative shows the adequate properties to meet with this end. The exact etching properties, however, are sensitively depends on the geometry of the released structure, because the most etching process of sacrificial layer proceeds to the lateral direction in narrow space. Also, the surface roughness of aluminum affects to the etching characteristics. This paper reports experimental results on the effect of microstructure and surface roughness of aluminum to the etching properties. Considering these effects, we propose the optimized etching condition, which can be used practically for the fabrication of aluminum electrodes and microstructures by using standard surface micromachining process without modification or additional process.

  • PDF

A New Surface Micromachining Technology for Low Voltage Actuated Switch and Mirror Arrays (저전압 구동용 전기스위치와 미러 어레이 응용을 위한 새로운 표면미세가공기술)

  • Park, Sang-Jun;Lee, Sang-Woo;Kim, Jong-Pal;Yi, Sang-Woo;Lee, Sang-Chul;Kim, Sung-Un;Cho, Dong-Il
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2518-2520
    • /
    • 1998
  • Silicon can be reactive ion etched (RIE) either isotropically or anisotropically. In this paper, a new micromachining technology combining these two etching characteristics is proposed. In the proposed method, the fabrication steps are as follows. First. a polysilicon layer, which is used as the bottom electrode, is deposited on the silicon wafer and patterned. Then the silicon substrate is etched anisotropically to a few micrometer depth that forms a cavity. Then an PECVD oxide layer is deposited to passivate the cavity side walls. The oxide layers at the top and bottom faces are removed while the passivation layers of the side walls are left. Then the substrate is etched again but in an isotropic etch condition to form a round trench with a larger radius than the anisotropic cavity. Then a sacrificial PECVD oxide layer is deposited and patterned. Then a polysilicon structural layer is deposited and patterned. This polysilicon layer forms a pivot structure of a rocker-arm. Finally, oxide sacrificial layers are etched away. This new micromachining technology is quite simpler than conventional method to fabricate joint structures, and the devices that are fabricated using this technology do not require a flexing structure for motion.

  • PDF