• Title/Summary/Keyword: s-quasinormal subgroups

Search Result 3, Processing Time 0.018 seconds

FINITE GROUPS WHICH ARE MINIMAL WITH RESPECT TO S-QUASINORMALITY AND SELF-NORMALITY

  • Han, Zhangjia;Shi, Huaguo;Zhou, Wei
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.6
    • /
    • pp.2079-2087
    • /
    • 2013
  • An $\mathcal{SQNS}$-group G is a group in which every proper subgroup of G is either s-quasinormal or self-normalizing and a minimal non-$\mathcal{SQNS}$-group is a group which is not an $\mathcal{SQNS}$-group but all of whose proper subgroups are $\mathcal{SQNS}$-groups. In this note all the finite minimal non-$\mathcal{SQNS}$-groups are determined.

ON π𝔉-EMBEDDED SUBGROUPS OF FINITE GROUPS

  • Guo, Wenbin;Yu, Haifeng;Zhang, Li
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.1
    • /
    • pp.91-102
    • /
    • 2016
  • A chief factor H/K of G is called F-central in G provided $(H/K){\rtimes}(G/C_G(H/K)){\in}{\mathfrak{F}}$. A normal subgroup N of G is said to be ${\pi}{\mathfrak{F}}$-hypercentral in G if either N = 1 or $N{\neq}1$ and every chief factor of G below N of order divisible by at least one prime in ${\pi}$ is $\mathfrak{F}$-central in G. The symbol $Z_{{\pi}{\mathfrak{F}}}(G)$ denotes the ${\pi}{\mathfrak{F}}$-hypercentre of G, that is, the product of all the normal ${\pi}{\mathfrak{F}}$-hypercentral subgroups of G. We say that a subgroup H of G is ${\pi}{\mathfrak{F}}$-embedded in G if there exists a normal subgroup T of G such that HT is s-quasinormal in G and $(H{\cap}T)H_G/H_G{\leq}Z_{{\pi}{\mathfrak{F}}}(G/H_G)$, where $H_G$ is the maximal normal subgroup of G contained in H. In this paper, we use the ${\pi}{\mathfrak{F}}$-embedded subgroups to determine the structures of finite groups. In particular, we give some new characterizations of p-nilpotency and supersolvability of a group.