FINITE GROUPS WHICH ARE MINIMAL WITH RESPECT TO S-QUASINORMALITY AND SELF-NORMALITY

Zhanguia Han, Huaguo Shi, and Wei Zhou

Abstract

An $\mathcal{S Q N} \mathcal{S}$-group G is a group in which every proper subgroup of G is either s-quasinormal or self-normalizing and a minimal non- $\mathcal{S Q} \mathcal{N}$-group is a group which is not an $\mathcal{S} \mathcal{Q} \mathcal{S}$-group but all of whose proper subgroups are $\mathcal{S Q N S}$-groups. In this note all the finite minimal non- $\mathcal{S} \mathcal{Q} \mathcal{S}$-groups are determined.

1. Introduction

Throughout this paper, only finite groups are considered.
Given a group theoretical property \mathcal{P}, a group belonging to a class of groups \mathcal{P} is called a \mathcal{P}-group and the other groups are called non- \mathcal{P}-groups. A minimal non- \mathcal{P}-group is a non- \mathcal{P}-group all of whose proper subgroups are \mathcal{P}-groups. The problem of determining all the finite minimal non- \mathcal{P}-groups has been studied by several authors and there are many remarkable examples about the minimal non- \mathcal{P}-groups: minimal non-abelian groups (Miller and Moreno [7]), minimal non-nilpotent groups (Schmidt), minimal non-supersolvable groups ([1]) and minimal non- p-nilpotent groups (Itô).

Recall that a subgroup H of a group G is said to be s-quasinormal in G if $H K=K H$ for any Sylow subgroup K of G. Let $\mathcal{S Q N S}$ denotes the class of all groups in which every proper subgroup is either s-quasinormal or selfnormalizing. Our principal object here is the classification of all the finite minimal non- $\mathcal{S} \mathcal{Q N} \mathcal{S}$-groups. Combining Theorems 3.3 and 3.4 in this paper, we get the following:
Main Theorem. Let G be a minimal non-SQNS-group. Then G is solvable and is isomorphic to one of the following groups:

[^0](1) $G=P \rtimes Q$ is a minimal non-nilpotent group, and P is non-cyclic.
(2) $G=C_{q} \rtimes\left(C_{p^{n}} \times C_{p}\right), \Phi\left(C_{p^{n}}\right) C_{p}=Z(G)$.
(3) $G=C_{q} \rtimes Q_{8}, Q_{8}$ induces an automorphism of order 2 on C_{q}.
(4) $G=C_{q} \rtimes M_{p^{n+1}}, C_{M_{p^{n+1}}}\left(C_{q}\right) \cong M_{p^{n}}$.
(5) $G=C_{q^{n}} \rtimes C_{p^{m}}, m \geq 2$, $\Phi(\Phi(P))=Z(G)$.
(6) $G=\langle a, b, c| a^{q^{m}}=b^{q^{m}}=1, c^{p^{n}}=1, a b=b a, a^{c}=a^{u}, b^{c}=b^{v}, u \not \equiv v$ $\left.\left(\bmod q^{m}\right), u \equiv v\left(\bmod q^{m-1}\right), u^{p} \equiv v^{p} \equiv 1\left(\bmod q^{m}\right)\right\rangle$. Furthermore, $u \not \equiv 1(\bmod q)$ and $v \not \equiv 1(\bmod q)$ if $m \geq 2$.
(7) $G=\left\langle x, y_{1}, y_{2}, \ldots, y_{b}\right| x^{p^{a}}=y_{1}^{q}=y_{2}^{q}=\cdots=y_{b}^{q}, y_{i} y_{j}=y_{j} y_{i}, i, j=$ $\left.1,2, \ldots, b, y_{i}^{x}=y_{i+1}, i=1,2, \ldots, b-1, y_{b}^{x}=y_{1}^{d_{1}} y_{2}^{d_{2}} \cdots y_{b}^{d_{b}}\right\rangle, f(z)=z^{b}-$ $d_{b} z^{b-1}-\cdots-d_{2} z-d_{1}$ is irreducible in F_{q}. Moreover, let
\[

A=\left[$$
\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
d_{1} & d_{2} & d_{3} & \cdots & d_{b}
\end{array}
$$\right]
\]

Then there exists $\lambda \not \equiv 1(\bmod q)$, such that $A^{p}=\lambda I$ (where I is the identity matrix) and $\lambda^{p} \equiv 1(\bmod q)$.

In the above (2)-(7), p and q are distinct primes and $p<q$.
(8) $G=\left(C_{q} \times C_{r}\right) \rtimes C_{p^{m}}$, and $Z(G)=\Phi\left(C_{p^{m}}\right) \times C_{r}$.
(9) $G=\left(C_{r} \rtimes C_{q^{m}}\right) \rtimes C_{p}$, and $Z(G)=\Phi\left(C_{q^{m}}\right)$ and C_{p} acts trivially on C_{r}.
(10) $G=C_{r} \rtimes\left(C_{q} \times C_{p}\right)$, and $Z(G)=1$.

We shall use the established terminology and notation in [2] and [4]. For example, $A \rtimes P$ denotes the semidirect product of A and $P ; C_{n}$ denotes a cyclic group of order n and $\pi(G)$ denotes the set of all prime divisors of $|G|$.

2. Some preliminaries

In this section, we collect some lemmas which will be used in the following.
Lemma 2.1 ([4, 7.2.2]). Suppose that the Sylow p-subgroups of G are cyclic, where p is the smallest prime divisor of $|G|$. Then G has a normal p-complement.

Lemma 2.2 ([5]). Suppose that p^{\prime}-group H acts on a p-group G. Let

$$
\Omega(G)= \begin{cases}\Omega_{1}(G) & p>2 \\ \Omega_{2}(G) & p=2\end{cases}
$$

If H acts trivially on $\Omega(G)$, then H acts trivially on G as well.
Lemma 2.3 (Maschke's Theorem, [4, 8.4.6]). Suppose that the action of A on an abelian group G is coprime and H is an A-invariant direct factor of G. Then H has an A-invariant complement in G.
Lemma 2.4 ([8]). If G is a minimal non-abelian simple group, then G is isomorphic to one of the following simple groups:
(1) $\operatorname{PSL}(2, p)$, where p is a prime with $p>3$ and $5 \nmid p^{2}-1$.
(2) $\operatorname{PSL}\left(2,2^{q}\right)$, where q is a prime.
(3) $\operatorname{PSL}\left(2,3^{q}\right)$, where q is a prime.
(4) $\operatorname{PSL}(3,3)$.
(5) The Suzuki group $S z\left(2^{q}\right)$, where q is an odd prime.

In proving our main theorem, the following result will be frequently used.
Lemma 2.5 ([6, Theorem 7]). Let G be a finite group. Then all subgroups of G are either s-quasinormal or self-normalizing if and only if either
(1) G is nilpotent, or
(2) $G=H \rtimes P$, where H is an abelian normal Hall p^{\prime}-subgroup and $P=$ $\langle x\rangle \in \operatorname{Syl}_{p}(G),\left\langle x^{p}\right\rangle=O_{p}(G)=Z(G)$, where p is the minimal prime dividing the order of G. Furthermore, x induces a fixed-point-free power automorphism of order p on H.

Let G be a group. By the proof of [6, Theorem 7], we know that the following statements are equivalent:

1. G is an $\mathcal{S Q N S}$-group.
2. Every subgroup of prime power order of G is either s-quasinormal in G or self-normalizing.

We will use above fact freely in our following proof.

3. Minimal non- $\mathcal{S} \mathcal{Q} \mathcal{S}$-groups

In this section, we classify finite minimal non- $\mathcal{S Q N} \mathcal{N}$-groups.
Lemma 3.1. Let G be a minimal non-SQNS-group. Then G is solvable.
Proof. Suppose that G is not solvable. By Lemma 2.5, every proper subgroup of G is solvable and hence $G / \Phi(G)$ is a minimal simple group. Let H be the 2 -complement of $\Phi(G)$. Then $H \unlhd G$ and H is nilpotent since H is an $\mathcal{S Q N S}$-group. We have following claims.
(1) $H=1$.

Suppose that $H \neq 1$. Let $P \in \operatorname{Syl}_{p}(H)$, where p is any prime in $\pi(H)$. Then $P \unlhd G$. Let $S_{2} \in \operatorname{Syl}_{2}(G)$ and $K=S_{2} P$. Then K is a proper subgroup of G, and hence K is an $\mathcal{S Q N S}$-group by hypothesis. If K is an $\mathcal{S Q N S}$-group as in (2) of Lemma 2.5, then S_{2} is cyclic, which concludes that G has normal 2 -complement, a contradiction. Hence we may assume that K is nilpotent. But it follows in this case that $S_{2} \leq C_{G}(P) \unlhd G$. Using the simplicity of $G / \Phi(G)$, we conclude that $S_{2} \leq C_{G}(P) \Phi(G)$, which concludes that G is solvable, a contradiction.
(2) Every subgroup of order $2^{m} p$ (p an odd prime) of $\bar{G}=G / \Phi(G)$ is 2nilpotent.

Assume that G possesses a subgroup L containing $S_{0}=\Phi(G)$ such that L / S_{0} is not a 2 -nilpotent group of order $2^{m} p$. Then L contains a minimal non-2-nilpotent subgroup D with order $2^{n} p$ for some natural number n. Hence
$D=S^{*} P$ is a minimal non-nilpotent group with a normal Sylow 2-subgroup S^{*} and $|P|=p$. Since G is non-solvable, D is a proper subgroup of G and so D is an $\mathcal{S Q N S}$-group by the hypothesis. Hence D is nilpotent by Lemma 2.5, a contradiction.
(3) Conclusion.

Now, we assert that there is no simple group listed in Lemma 2.4 isomorphic to \bar{G}. And then we get that G is solvable. In fact, if \bar{G} is isomorphic to one of $\operatorname{PSL}(2, p), P S L\left(2,3^{q}\right)$ and $P S L(3,3)$, then \bar{G} has a subgroup isomorphic to A_{4}, the alternating group of degree 4 , a contradiction to (2). If $\bar{G} \cong P S L\left(2,2^{q}\right)$ or $S z\left(2^{q}\right)$, then \bar{G} is a Zassenhaus group of odd degree and the stabilizer of a point is a Frobenius group with kernel a 2 -group, again a contradiction to (2). Hence \bar{G} cannot be any one of $P S L\left(2,2^{q}\right)$ and $S z\left(2^{q}\right)$ as well. Thus the proof is completed.

Lemma 3.2. Let G be a minimal non- $\mathcal{S Q N S}$-group. Then $|\pi(G)| \leq 3$.
Proof. Suppose that $|\pi(G)|>3$. Let $\left\{P_{1}, P_{2}, \ldots, P_{k}, \ldots, P_{r}\right\}, r>3$ be a Sylow basis of G, where $P_{i} \in \operatorname{Syl}_{p_{i}}(G), i=1,2, \ldots, r$. Since G is not an $\mathcal{S Q N S}$-group, there exists a subgroup $P_{i}^{*} \leq P_{i}$ (for some i) such that P_{i}^{*} is neither s-quasinormal nor self-normalizing by Lemma 2.5. By hypothesis $P_{i} P_{j}$ is an $\mathcal{S Q N} \mathcal{S}$-group for each $i \neq j \in\{1,2, \ldots, r\}$. If P_{i} is non-cyclic, then by Lemma 2.5, P_{i} is normal in $P_{i} P_{j}$, which implies that P_{i} is normal in G and hence P_{i}^{*} is a proper subgroup of P_{i}. Choose a $P_{k} \in\left\{P_{1}, P_{2}, \ldots, P_{k}, \ldots, P_{r}\right\}$ such that $P_{i}^{*} P_{k} \neq P_{k} P_{i}^{*}$, where $k \neq i, j$. Let $H=P_{i} P_{j} P_{k}$. Then H is an $\mathcal{S Q N S}$-group. However, P_{i}^{*} is neither s-quasinormal nor self-normalizing in H, a contradiction. Hence we may assume that P_{i} is cyclic. If $P_{i}^{*} \neq P_{i}$, then
 implies that P_{i}^{*} is normal in G, a contradiction. If $P_{i}^{*}=P_{i}$, then there exists $j \neq k \in\{1,2, \ldots, r\}$ such that both $P_{i} P_{j}=P_{j} \rtimes P_{i}$ and $P_{i} P_{k}=P_{i} \times P_{k}$ (or $P_{i} P_{k}=P_{i} \rtimes P_{k}$) hold. Now $K=P_{i} P_{j} P_{k}$ is a proper subgroup of G and hence an $\mathcal{S} \mathcal{Q} \mathcal{S}$-group since we assume that $|\pi(G)|>3$. However, P_{i} is obvious neither s-quasinormal nor self-normalizing in K, a contradiction. This contradiction shows that $|\pi(G)| \leq 3$. The proof is completed.

The following theorem classifies all minimal non- $\mathcal{S} \mathcal{N} \mathcal{S}$-groups whose order having two prime divisors.

Theorem 3.3. Let G be a minimal non- $\mathcal{S Q N S}$-group with $|\pi(G)|=2$. Then one of the following holds:
(1) $G=P \rtimes Q$ is a minimal non-nilpotent group, and P is non-cyclic.
(2) $G=C_{q} \rtimes\left(C_{p^{n}} \times C_{p}\right), \Phi\left(C_{p^{n}}\right) C_{p}=Z(G)$.
(3) $G=C_{q} \rtimes Q_{8}, Q_{8}$ induces an automorphism of order 2 on C_{q}.
(4) $G=C_{q} \rtimes M_{p^{n+1}}, C_{M_{p^{n+1}}}\left(C_{q}\right) \cong M_{p^{n}}$.
(5) $G=C_{q^{n}} \rtimes C_{p^{m}}, m \geq 2$, $\Phi(\Phi(P))=Z(G)$.
(6) $G=\langle a, b, c| a^{q^{m}}=b^{q^{m}}=1, c^{p^{n}}=1, a b=b a, a^{c}=a^{u}, b^{c}=b^{v}$, $\left.u \not \equiv v\left(\bmod q^{m}\right), u \equiv v\left(\bmod q^{m-1}\right), u^{p} \equiv v^{p} \equiv 1\left(\bmod q^{m}\right)\right\rangle$. Furthermore, $u \not \equiv 1(\bmod q)$ and $v \not \equiv 1(\bmod q)$ if $m \geq 2$.
(7) $G=\left\langle x, y_{1}, y_{2}, \ldots, y_{b}\right| x^{p^{a}}=y_{1}^{q}=y_{2}^{q}=\cdots=y_{b}^{q}, y_{i} y_{j}=y_{j} y_{i}, i, j=$ $\left.1,2, \ldots, b, y_{i}^{x}=y_{i+1}, i=1,2, \ldots, b-1, y_{b}^{x}=y_{1}^{d_{1}} y_{2}^{d_{2}} \cdots y_{b}^{d_{b}}\right\rangle, f(z)=z^{b}-$ $d_{b} z^{b-1}-\cdots-d_{2} z-d_{1}$ is irreducible in F_{q}. Moreover, let

$$
A=\left[\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
d_{1} & d_{2} & d_{3} & \cdots & d_{b}
\end{array}\right]
$$

Then there exists $\lambda \not \equiv 1(\bmod q)$, such that $A^{p}=\lambda I($ where I is the identity matrix) and $\lambda^{p} \equiv 1(\bmod q)$.

In the above (2)-(7), p and q are distinct primes and $p<q$.
Proof. Let $G=P Q$, where $P \in \operatorname{Syl}_{p}(G)$ and $Q \in \operatorname{Syl}_{q}(G)$. Without loss of generality, we always assume that $p<q$. Since G is solvable, there is a normal maximal subgroup M of G such that $|G: M|=p$ or q. By our assumption, M is an $\mathcal{S Q N S}$-group. Hence we can get that either P or Q must be normal in G.

Case 1. P is normal in G.
By Lemma 2.1, P is not a cyclic subgroup. Let Q_{1} and Q_{2} be two different maximal subgroups of Q. Then $P Q_{1}$ and $P Q_{2}$ are all $\mathcal{S Q N} \mathcal{S}$-groups by hypothesis. By Lemma 2.5, both $P Q_{1}$ and $P Q_{2}$ are nilpotent, which implies that G is nilpotent, a contradiction. Therefore we get Q is cyclic. Since $\Phi(Q) P$ is an $\mathcal{S} Q \mathcal{N} \mathcal{S}$-group, we have that $\Phi(Q) P=\Phi(Q) \times P$. Thus $\Phi(Q) \leq Z(G)$. Again by Lemma 2.5, we know that Q acts non-trivially on P, but acts trivially on every Q-invariant proper subgroup of P. It is easy to see that, G is a minimal non-nilpotent-group in this case. That is, G is of type (1).

Case 2. Q is normal in G.
(2.1) Suppose in the first place that P is non-cyclic. By Lemma 2.5, we know that P acts non-trivially on Q, but acts trivially on every P-invariant proper subgroup of Q. Applying Hall-Higman-Reduction Theorem, we can get that $\exp (Q)=q$. Assume that $|Q|>q$. Let P_{1} and P_{2} be two maximal subgroups of P. Then both $P_{1} Q$ and $P_{2} Q$ are $\mathcal{S Q N} \mathcal{S}$-groups. Hence $P_{i}(i=1,2)$ induces a fixed-point-free power automorphism on Q, which implies that the action of P on Q is reducible. Hence $C_{Q}(P)>1$. On the other hand, $P_{1} Q$ or $P_{2} Q$ must be non-nilpotent by Lemma 2.5. Thus we have that P has at most one noncyclic maximal subgroup and either $C_{Q}\left(P_{1}\right)=1$ or $C_{Q}\left(P_{2}\right)=1$, which leads to $C_{Q}(P)=1$, a contradiction. Thus we have $|Q|=q$. Since P has at most one non-cyclic maximal subgroup, P is isomorphic to the quaternion group Q_{8} or $C_{p^{n}} \times C_{p}$ or $P \cong M_{p^{n+1}}$ (see [3, Lemma 2.9]).

If $P \cong C_{p^{n}} \times C_{p}$, then $G \cong C_{q} \rtimes\left(C_{p^{n}} \times C_{p}\right), \Phi\left(C_{p^{n}}\right) C_{p}=Z(G)$. That is, G is of type (2).

If $P \cong Q_{8}$, then $G \cong C_{q} \rtimes Q_{8}, Q_{8}$ induces an automorphism of order 2 on C_{q}. That is, G is of type (3).

If $P \cong M_{p^{n+1}}$, then $G \cong C_{q} \rtimes M_{p^{n+1}}, C_{M_{p^{n+1}}}\left(C_{q}\right) \cong M_{p^{n}}$. That is, G is of type (4).
(2.2) Suppose that P is cyclic and the action of P on $Q / \Phi(Q)$ is reducible. Let $P=\langle c\rangle$ and $Q=\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle$. Since the action of P on $Q / \Phi(Q)$ is reducible, we have that $Q / \Phi(Q)$ is P-completely reducible. If $n \geq 3$, we claim that $C_{Q}(P)=1$. Suppose that $C_{Q}(P)>1$. Let $x \in C_{Q}(P)$. Then $P\left\langle x, x_{i}\right\rangle$ is a nilpotent $\mathcal{S Q N S}$-group by Lemma 2.5 , where $i=1,2, \ldots, n$. It implies that $P Q$ is nilpotent, a contradiction. Hence $C_{Q}(P)=1$. Since the action of P on $\left\langle x_{i}, x_{j}\right\rangle$ is invariable, we have $x_{i} x_{j}=x_{j} x_{i}$ by Lemma 2.5. It implies that Q is abelian and hence $Q=\left\langle x_{1}\right\rangle \times\left\langle x_{2}\right\rangle \times \cdots \times\left\langle x_{n}\right\rangle$. Let $o\left(x_{i}\right)=q^{m_{i}}$ and let $q^{m_{1}}=\exp (Q)$. Since $C_{Q}(P)=1, P\left\langle x_{1}, x_{i}\right\rangle$ is a non-nilpotent $\mathcal{S} \mathcal{Q N} \mathcal{S}$-group. Thus there exists a natural number w satisfying $x^{c}=x^{w}$ for each $x \in\left\langle x_{1}, x_{i}\right\rangle$. Then $w \equiv u_{1}\left(\bmod q^{m_{1}}\right)$ and $w \equiv u_{i}\left(\bmod q^{m_{i}}\right)$ for some natural numbers u_{1} and u_{i}. Thus we get $u_{i} \equiv u_{1}\left(\bmod q^{m_{i}}\right)$. It follows that P induces a fixed-point-free power automorphism of order p on Q and hence G itself is an $\mathcal{S Q N S}$-group, a contradiction. Therefore we have $n \leq 2$.

If Q is cyclic, then we have $|P| \geq p^{2}$ by the structure of $\mathcal{S Q N} \mathcal{S}$-groups. Hence $G=C_{q^{n}} \rtimes C_{p^{m}}, m \geq 2, \Phi(\Phi(P))=Z(G)$. That is, G is of type (5).

If Q is non-cyclic and $\Omega_{1}(Q)=Q$, then Q is an elementary abelian q-group. In this case, $G=\langle a, b, c\rangle, a^{q}=b^{q}=c^{p^{m}}=1, a b=b a, a^{c}=a^{i}, b^{c}=b^{j}, i \not \equiv$ $j(\bmod q), i^{p} \equiv j^{p} \equiv 1(\bmod q)$. That is, G is of type (6).

If Q is non-cyclic and $\Omega_{1}(Q) \neq Q$, then we can get $C_{Q}(P)=1$ by Lemma 2.2. Let $Q=\langle a, b\rangle$. Then $\langle a \Phi(Q)\rangle$ and $\langle b \Phi(Q)\rangle$ are P-invariant. Hence $\langle a \Phi(Q)\rangle$ and $\langle b \Phi(Q)\rangle$ are all abelian by Lemma 2.5, it follows that G is abelian or minimal non-abelian.

If Q is abelian, let $Q=\langle a, b\rangle, a^{q^{m}}=1, b^{q^{n}}=1$ and $P=\langle c\rangle, a^{c}=a^{u}, b^{c}=b^{v}$. We claim that $m=n$. Indeed, let $m<n$, and $Q_{1}=\left\langle a, b^{q}\right\rangle$. Then $P Q_{1}=$ $Q_{1} \rtimes P$ is an $\mathcal{S Q N} \mathcal{S}$-group. Hence there exists a natural number w such that $a^{c}=a^{w},\left(b^{q}\right)^{c}=\left(b^{p}\right)^{w}$ by Lemma 2.5. It follows that $u \equiv w\left(\bmod q^{m}\right)$ and $q v \equiv$ $q w\left(\bmod q^{n}\right)$. Thus $v \equiv w\left(\bmod q^{n-1}\right)$. Since $m<n$, we get $v \equiv w\left(\bmod q^{m}\right)$ and hence $u \equiv v\left(\bmod q^{m}\right)$. Therefore we have $x^{c}=x^{v}$ for every $x \in Q$, which implies that P induces a fixed-point-free power automorphism of order p on Q, a contradiction. Hence $m=n$ and then $G=\langle a, b, c\rangle, a^{q^{m}}=b^{q^{m}}=1, c^{p^{n}}=1$, $a b=b a, a^{c}=a^{u}, b^{c}=b^{v} . u \not \equiv v\left(\bmod q^{m}\right), u \equiv v\left(\bmod q^{m-1}\right), u^{p} \equiv v^{p} \equiv$ $1\left(\bmod q^{m}\right), u \not \equiv 1(\bmod q), v \not \equiv 1(\bmod q), m \geq 2$. That is, G is of type (6).

If Q is minimal non-abelian, then by [7], we have $Q=\langle a, b\rangle, a^{q^{m}}=b^{q^{n}}=$ $1, a^{b}=a^{1+q^{m-1}}, m \geq 2$. Let $P=\langle c\rangle, a^{c}=b^{i} a^{j}, b^{c}=b^{u} a^{v}$. Then $\left(a^{q}\right)^{c}=$ $b^{q i} a^{q j},\left(b^{q}\right)^{c}=b^{q u} a^{q v}$. On the other hand, $q^{n-1}\left|i, q^{m-1}\right| v$, and $(q, j)=1$, $(q, u)=1$. So $\left(b^{i} a^{j}\right)^{1+q^{m-1}}=b^{i+i q^{m-1}} a^{j+j q^{m-1}}$ and $\left(b^{i} a^{j}\right)^{b^{u} a^{v}}=b^{i} a^{j+j u q^{m-1}}$. Since P induces an automorphism on Q, we get $b^{i+i q^{m-1}} a^{j+j q^{m-1}}=b^{i} a^{j+j u q^{m-1}}$.

Thus $j+j q^{m-1} \equiv j+j u q^{m-1}\left(\bmod q^{m}\right)$. Hence $u \equiv 1(\bmod q)$, it follows that $\left(b^{q^{n-1}}\right)^{c}=b^{q^{n-1}}$, contrary to $C_{Q}(P)=1$.
(2.3) Suppose that P is cyclic and the action of P on $Q / \Phi(Q)$ is irreducible. If Q is cyclic, then G is of type (5).
Suppose that Q is not cyclic. Since the action of P on $Q / \Phi(Q)$ is irreducible, all P-invariant subgroups of Q are contained in $\Phi(Q)$.

If $C_{Q}(P) \neq 1$, then $C_{Q}(P)$ is contained in $\Phi(Q)$. Hence $P \leq C_{G}(\Phi(Q))$, it implies that P acts non-trivially on Q, but acts trivially on every P-invariant subgroup of Q, hence $\exp (Q)=q$. On the other hand, $1 \neq C_{Q}(P) \leq \Phi(Q)$, so Q is non-abelian, furthermore, $Q \leq C_{G}(\Phi(P))$. It implies that G is a minimal non-nilpotent group. That is, G is of type (1).

If $C_{Q}(P)=1$, we claim that $\Phi(Q)=1$. Otherwise, $P \Phi(Q)$ is a non-nilpotent $\mathcal{S Q N S}$-group. By Lemma 2.5 we have $p \mid q-1$. On the other hand, if Q is abelian, then $\Omega_{1}(Q) \neq Q$, hence P acts on $\Omega_{1}(Q)$ reducibly by Lemma 2.5, furthermore P acts reducibly on Q as well, a contradiction. So Q is nonabelian and $\Phi(P)$ acts trivially on Q. Now let $\bar{P}=P / \Phi(P), \bar{Q}=Q / \Phi(Q)$. Then $\bar{Q} \rtimes \bar{P}=\left\langle x, y_{1}, y_{2}, \ldots, y_{b}\right| x^{p}=y_{1}^{q}=y_{2}^{q}=\cdots=y_{b}^{q}, y_{i} y_{j}=y_{j} y_{i}, i, j=$ $\left.1,2, \ldots, b, y_{i}^{x}=y_{i+1}, i=1,2, \ldots, b-1, y_{b}^{x}=y_{1}^{d_{1}} y_{2}^{d_{2}} \cdots y_{b}^{d_{b}}\right\rangle$, where $f(z)=$ $z^{b}-d_{b} z^{b-1}-\cdots-d_{2} z-d_{1}$ is irreducible in F_{q} and $f(z) \mid z^{p}-1$ by [7]. Since $p\left|q-1, z^{p}-1\right| z^{q-1}-1$. However, $z^{q-1}-1$ is completely decomposable in F_{q}, which implies that $f(z)$ is completely decomposable in F_{q}, a contradiction. Hence our claim holds and so Q is elementary abelian.

If $\Phi(P)$ acts trivially on Q, then G is a minimal non-nilpotent group. That is, G is of type (1).

Suppose that $\Phi(P)$ acts non-trivially on Q. Let $P=\left\langle x \mid x^{p^{a}}=1\right\rangle$. Then Q is a $F_{q} P$-module. By choosing a suitable basis of Q, we have that the representation matrix of x is the following type:

$$
A=\left[\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
d_{1} & d_{2} & d_{3} & \cdots & d_{b}
\end{array}\right]
$$

Thus we obtain that $G=\left\langle x, y_{1}, y_{2}, \ldots, y_{b}\right| x^{p^{a}}=y_{1}^{q}=y_{2}^{q}=\cdots=y_{b}^{q}, y_{i} y_{j}=$ $\left.y_{j} y_{i}, i, j=1,2, \ldots, b, y_{i}^{x}=y_{i+1}, i=1,2, \ldots, b-1, y_{b}^{x}=y_{1}^{d_{1}} y_{2}^{d_{2}} \cdots y_{b}^{d_{b}}\right\rangle$. Since Q is a irreducible $F_{q} P$-module, the characteristic polynomial $f(z)=z^{b}-d_{b} z^{b-1}-$ $\cdots-d_{2} z-d_{1}$ of A is irreducible in F_{q}. On the other hand, $\Phi(P) Q$ is not nilpotent. Hence $\left\langle x^{p}\right\rangle$ induces a fixed-point-free power automorphism of order p on Q and $\left\langle x^{p^{2}}\right\rangle$ acts trivially on Q by Lemma 2.5. Thus there is a λ such that $\lambda \not \equiv 1(\bmod q)$, and $A^{p}=\lambda I\left(\right.$ where I is the identity matrix) and $\lambda^{p} \equiv 1(\bmod q)$. That is, G is of type (7).

The proof is completed.
The following theorem classifies all minimal non- $\mathcal{S Q N}$-groups whose order having three prime divisors.

Theorem 3.4. Let G be a minimal non- $\mathcal{S Q N S}$-group with $|\pi(G)|=3$. Then one of the following holds:
(1) $G=\left(C_{q} \times C_{r}\right) \rtimes C_{p^{m}}$, and $Z(G)=\Phi\left(C_{p^{m}}\right) \times C_{r}$.
(2) $G=\left(C_{r} \rtimes C_{q^{m}}\right) \rtimes C_{p}$, and $Z(G)=\Phi\left(C_{q^{m}}\right)$ and C_{p} acts trivially on C_{r}.
(3) $G=C_{r} \rtimes\left(C_{q} \times C_{p}\right)$, and $Z(G)=1$.

Proof. Since G is solvable, we may assume that $G=P Q R$, where $P \in \operatorname{Syl}_{p}(G)$, $Q \in \operatorname{Syl}_{q}(G), R \in \operatorname{Syl}_{r}(G)$. Without loss of generality, we always let p be the smallest prime divisor of $|G|$. If P is non-cyclic, then $P Q$ and $P R$ are all nilpotent by Lemma 2.5. Hence P is normal in G. Let P_{1} be a maximal subgroup of P. Then $P_{1} Q R$ is an $\mathcal{S Q N S}$-group and hence we get $P_{1} Q R$ is nilpotent by Lemma 2.5, which implies that G itself is nilpotent, a contradiction. Thus we have that P is cyclic. By Lemma 2.1, $Q R \unlhd G$. Since $Q R$ is an $\mathcal{S Q N} \mathcal{S}$-group, we have by Lemma 2.5 that $R Q$ is either a nilpotent group or a group of the type (2) in Lemma 2.5.

Case 1. $R Q$ is a nilpotent group.
In this case both Q and R is normal in G. If $P Q=Q \rtimes P$ and $P R=R \rtimes P$, then we have that P induces a fixed-point-free power automorphism of order p on Q and R and $N_{G}(P)=P$ by Lemma 2.5. Let $z \in R$ is an element of order r. If $\langle z\rangle P Q$ is an $\mathcal{S Q N S}$-group, then $\langle z\rangle Q P=(\langle z\rangle \times Q) \rtimes P$. Let $P=\langle x\rangle$ and $y z$ be any element of $\langle z\rangle Q$, where $y \in Q$. Then $(y z)^{x}=(y z)^{k}$ for a positive integer k. On the other hand, we have $y^{x}=y^{m}$ and $z^{x}=z^{n}$. Thus $y^{m} z^{n}=(y z)^{x}=(y z)^{k}=y^{m} z^{k}$. Therefore $y^{m}=y^{k}$ and $z^{n}=z^{k}$, which implies that P induces a fixed-point-free power automorphism of order p on $Q R$, a contradiction. Hence R is of prime order. By the same argument we have Q is of prime order too. Thus $G=\left(C_{q} \times C_{r}\right) \rtimes C_{p^{m}}$. However, G is obvious an $\mathcal{S Q N S}$-group, a contradiction.

If $P Q=Q \rtimes P$ and $P R=R \times P($ or $P Q=Q \times P$ and $P R=R \rtimes P)$, then $N_{G}(P)=P R$. Let $z \in R$ be an element of order r. If $\langle z\rangle P Q$ is an $\mathcal{S Q N S}$ group, then $\langle z\rangle Q P=(\langle z\rangle \times Q) \rtimes P$. But in this case we have $N_{\langle z\rangle Q P}(P)=$ $P\langle z\rangle>P$, a contradiction. Hence R is of prime order. By the same argument we have Q is of prime order too. Thus $G=\left(C_{q} \times C_{r}\right) \rtimes C_{p^{m}}$, and $Z(G)=$ $\Phi\left(C_{p^{m}}\right) \times C_{r}$. That is, G is of type (1).

Case 2. $R Q$ is a group of the type (2) in Lemma 2.5.
Without loss of generality, we assume that $q<r$. Then $R \not \leq N_{G}(Q)$. By the same reason as in Case 1, we can get that P and R are both of prime order. If P acts trivially on R, then we have P acts trivially on $\Phi(Q)$ since $P \Phi(Q) R$ is an $\mathcal{S Q N S}$-group. Thus $G=\left(C_{r} \rtimes C_{q^{m}}\right) \rtimes C_{p}$, and $Z(G)=\Phi\left(C_{q^{m}}\right)$. That is, G is of type (2).

If P acts non-trivially on R, then either $\Phi(Q)=1$ or P acts non-trivially on $\Phi(Q)$. Thus $G=\left(C_{r} \rtimes C_{q^{m}}\right) \rtimes C_{p}$, and $Z(G)=1$. Let $V=C_{q^{m}} \rtimes C_{p}$. Then $V / C_{V}\left(C_{r}\right) \leq \operatorname{Aut}\left(C_{r}\right)$ is a cyclic group. If P acts non-trivially on $\Phi(Q)$, then we can get a contradiction since $V / C_{V}\left(C_{r}\right)$ is not cyclic. If $\Phi(Q)=1$, then we obtain that $C_{q} C_{p}=C_{q} \times C_{p}$. That is, G is of type (3).

Thus our proof is completed.

References

1] K. Doerk, Minimal nicht überauflösbare endliche Gruppen, Math. Z. 91 (1966), 198-205.
[2] D. Gorenstein, Finite Groups, New York, Harper \& Row press, 1980.
[3] P. Guo and X. Guo, On minimal non-MSN-groups, Front. Math. China 6 (2011), no. 5, 847-854.
[4] H. Kurzweil and B. Stellmacher, The Theory of Finite Groups, New York, SpringerVerlag, 2004.
[5] T. J. Laffey, A Lemma on finite p-group and some consequences, Proc. Cambridge Philos. Soc. 75 (1974), 133-137.
[6] K. Lu and Z. Hao, Finite groups with only s-quasinormal and self-normalzing subgroups, Soochow J. Math. 24 (1998), no. 1, 9-12.
[7] G. A. Miller and H. C. Moreno, Non-abelian groups in which every subgroup is abelian, Trans. Amer. Math. Soc. 4 (1903), no. 4, 398-404.
[8] J. G. Thompson, Nonsolvable finite groups all of whose local subgroups are solvable, Bull. Amer. Math. Soc. 74 (1968), 383-437.

Zhanguia Han
School of Applied Mathematics
Chengdu University of Information Technology
Sichuan 610225, P. R. China
E-mail address: hzjmm11@163.com
Huaguo Shi
Sichuan Vocational and Technical College
Sichuan 629000, P. R. China
E-mail address: shihuaguo@126.com
Wei Zhou
School of Mathematics and Statistics
Southwest University
Chongqing 400715, P. R. China
E-mail address: zh_great@swu.edu.cn

[^0]: Received January 11, 2013.
 2010 Mathematics Subject Classification. 20D35, 20E34.
 Key words and phrases. s-quasinormal subgroups, self-normalizing subgroups, $\mathcal{S Q N S}$ groups, minimal non- $\mathcal{S Q} \mathcal{N} \mathcal{S}$-groups.

 This work is supported by the National Scientific Foundation of China(No:11271301) and NSFC-Henan Joint Fund(U1204101) and Scientific Research Foundation of SiChuan Provincial Education Department(No:11ZB174) and Scientific Research Foundation of SiChuan Provincial Education Department(No:12ZB018).

