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FINITE GROUPS WHICH ARE MINIMAL WITH RESPECT

TO S-QUASINORMALITY AND SELF-NORMALITY

Zhangjia Han, Huaguo Shi, and Wei Zhou

Abstract. An SQNS-group G is a group in which every proper sub-
group of G is either s-quasinormal or self-normalizing and a minimal
non-SQNS-group is a group which is not an SQNS-group but all of
whose proper subgroups are SQNS-groups. In this note all the finite
minimal non-SQNS-groups are determined.

1. Introduction

Throughout this paper, only finite groups are considered.
Given a group theoretical property P , a group belonging to a class of groups

P is called a P-group and the other groups are called non-P-groups. A minimal
non-P-group is a non-P-group all of whose proper subgroups are P-groups. The
problem of determining all the finite minimal non-P-groups has been studied
by several authors and there are many remarkable examples about the minimal
non-P-groups: minimal non-abelian groups (Miller and Moreno [7]), minimal
non-nilpotent groups (Schmidt), minimal non-supersolvable groups ([1]) and
minimal non-p-nilpotent groups (Itô).

Recall that a subgroup H of a group G is said to be s-quasinormal in G if
HK = KH for any Sylow subgroup K of G. Let SQNS denotes the class
of all groups in which every proper subgroup is either s-quasinormal or self-
normalizing. Our principal object here is the classification of all the finite
minimal non-SQNS-groups. Combining Theorems 3.3 and 3.4 in this paper,
we get the following:

Main Theorem. Let G be a minimal non-SQNS-group. Then G is solvable

and is isomorphic to one of the following groups:
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(1) G = P ⋊Q is a minimal non-nilpotent group, and P is non-cyclic.

(2) G = Cq ⋊ (Cpn × Cp), Φ(Cpn)Cp = Z(G).
(3) G = Cq ⋊Q8, Q8 induces an automorphism of order 2 on Cq.

(4) G = Cq ⋊Mpn+1, CM
pn+1

(Cq) ∼= Mpn .

(5) G = Cqn ⋊ Cpm , m ≥ 2, Φ(Φ(P )) = Z(G).

(6) G = 〈a, b, c | aq
m

= bq
m

= 1, cp
n

= 1, ab = ba, ac = au, bc = bv, u 6≡ v
(mod qm), u ≡ v (mod qm−1), up ≡ vp ≡ 1 (mod qm)〉. Furthermore,

u 6≡ 1 (mod q) and v 6≡ 1 (mod q) if m ≥ 2.
(7) G = 〈x, y1, y2, . . . , yb | xpa

= yq1 = yq2 = · · · = yqb , yiyj = yjyi, i, j =

1, 2, . . . , b, yxi = yi+1, i = 1, 2, . . . , b − 1, yxb = yd1

1 yd2

2 · · · ydb

b 〉, f(z) = zb −
dbz

b−1 − · · · − d2z − d1 is irreducible in Fq. Moreover, let

A =









0 1 0 · · · 0
0 0 1 · · · 0
· · · · · · · · · · · · · · ·
d1 d2 d3 · · · db









.

Then there exists λ 6≡ 1 (mod q), such that Ap = λI (where I is the identity

matrix) and λp ≡ 1 (mod q).
In the above (2)-(7), p and q are distinct primes and p < q.
(8) G = (Cq × Cr)⋊ Cpm , and Z(G) = Φ(Cpm)× Cr.

(9) G = (Cr ⋊Cqm)⋊Cp, and Z(G) = Φ(Cqm ) and Cp acts trivially on Cr.

(10) G = Cr ⋊ (Cq × Cp), and Z(G) = 1.

We shall use the established terminology and notation in [2] and [4]. For
example, A⋊P denotes the semidirect product of A and P ; Cn denotes a cyclic
group of order n and π(G) denotes the set of all prime divisors of |G|.

2. Some preliminaries

In this section, we collect some lemmas which will be used in the following.

Lemma 2.1 ([4, 7.2.2]). Suppose that the Sylow p-subgroups of G are cyclic,

where p is the smallest prime divisor of |G|. Then G has a normal p-complem-

ent.

Lemma 2.2 ([5]). Suppose that p′-group H acts on a p-group G. Let

Ω(G) =

{

Ω1(G) p > 2,
Ω2(G) p = 2.

If H acts trivially on Ω(G), then H acts trivially on G as well.

Lemma 2.3 (Maschke’s Theorem, [4, 8.4.6]). Suppose that the action of A
on an abelian group G is coprime and H is an A-invariant direct factor of G.

Then H has an A-invariant complement in G.

Lemma 2.4 ([8]). If G is a minimal non-abelian simple group, then G is

isomorphic to one of the following simple groups:
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(1) PSL(2, p), where p is a prime with p > 3 and 5 ∤ p2 − 1.
(2) PSL(2, 2q), where q is a prime.

(3) PSL(2, 3q), where q is a prime.

(4) PSL(3, 3).
(5) The Suzuki group Sz(2q), where q is an odd prime.

In proving our main theorem, the following result will be frequently used.

Lemma 2.5 ([6, Theorem 7]). Let G be a finite group. Then all subgroups of

G are either s-quasinormal or self-normalizing if and only if either

(1) G is nilpotent, or

(2) G = H ⋊ P , where H is an abelian normal Hall p′-subgroup and P =
〈x〉 ∈ Sylp(G), 〈xp〉 = Op(G) = Z(G), where p is the minimal prime dividing

the order of G. Furthermore, x induces a fixed-point-free power automorphism

of order p on H.

Let G be a group. By the proof of [6, Theorem 7], we know that the following
statements are equivalent:

1. G is an SQNS-group.
2. Every subgroup of prime power order of G is either s-quasinormal in G

or self-normalizing.
We will use above fact freely in our following proof.

3. Minimal non-SQNS-groups

In this section, we classify finite minimal non-SQNS-groups.

Lemma 3.1. Let G be a minimal non-SQNS-group. Then G is solvable.

Proof. Suppose that G is not solvable. By Lemma 2.5, every proper subgroup
of G is solvable and hence G/Φ(G) is a minimal simple group. Let H be
the 2-complement of Φ(G). Then H E G and H is nilpotent since H is an
SQNS-group. We have following claims.

(1) H = 1.
Suppose that H 6= 1. Let P ∈ Sylp(H), where p is any prime in π(H). Then

P E G. Let S2 ∈ Syl2(G) and K = S2P . Then K is a proper subgroup of
G, and hence K is an SQNS-group by hypothesis. If K is an SQNS-group
as in (2) of Lemma 2.5, then S2 is cyclic, which concludes that G has normal
2-complement, a contradiction. Hence we may assume that K is nilpotent. But
it follows in this case that S2 ≤ CG(P ) EG. Using the simplicity of G/Φ(G),
we conclude that S2 ≤ CG(P )Φ(G), which concludes that G is solvable, a
contradiction.

(2) Every subgroup of order 2mp (p an odd prime) of G = G/Φ(G) is 2-
nilpotent.

Assume that G possesses a subgroup L containing S0 = Φ(G) such that
L/S0 is not a 2-nilpotent group of order 2mp. Then L contains a minimal
non-2-nilpotent subgroup D with order 2np for some natural number n. Hence
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D = S∗P is a minimal non-nilpotent group with a normal Sylow 2-subgroup
S∗ and |P | = p. Since G is non-solvable, D is a proper subgroup of G and so
D is an SQNS-group by the hypothesis. Hence D is nilpotent by Lemma 2.5,
a contradiction.

(3) Conclusion.
Now, we assert that there is no simple group listed in Lemma 2.4 isomorphic

to G. And then we get that G is solvable. In fact, if G is isomorphic to one
of PSL(2, p), PSL(2, 3q) and PSL(3, 3), then G has a subgroup isomorphic to
A4, the alternating group of degree 4, a contradiction to (2). If G ∼= PSL(2, 2q)
or Sz(2q), then G is a Zassenhaus group of odd degree and the stabilizer of a
point is a Frobenius group with kernel a 2-group, again a contradiction to (2).
Hence G cannot be any one of PSL(2, 2q) and Sz(2q) as well. Thus the proof
is completed. �

Lemma 3.2. Let G be a minimal non-SQNS-group. Then |π(G)| ≤ 3.

Proof. Suppose that |π(G)| > 3. Let {P1, P2, . . . , Pk, . . . , Pr}, r > 3 be a
Sylow basis of G, where Pi ∈ Sylpi

(G), i = 1, 2, . . . , r. Since G is not an
SQNS-group, there exists a subgroup P ∗

i ≤ Pi (for some i) such that P ∗
i is

neither s-quasinormal nor self-normalizing by Lemma 2.5. By hypothesis PiPj

is an SQNS-group for each i 6= j ∈ {1, 2, . . . , r}. If Pi is non-cyclic, then by
Lemma 2.5, Pi is normal in PiPj , which implies that Pi is normal in G and
hence P ∗

i is a proper subgroup of Pi. Choose a Pk ∈ {P1, P2, . . . , Pk, . . . , Pr}
such that P ∗

i Pk 6= PkP
∗
i , where k 6= i, j. Let H = PiPjPk. Then H is an

SQNS-group. However, P ∗
i is neither s-quasinormal nor self-normalizing in

H , a contradiction. Hence we may assume that Pi is cyclic. If P ∗
i 6= Pi, then

by the structure of SQNS-groups, P ∗
i is normal in PiPj for each j 6= i, which

implies that P ∗
i is normal in G, a contradiction. If P ∗

i = Pi, then there exists
j 6= k ∈ {1, 2, . . . , r} such that both PiPj = Pj ⋊ Pi and PiPk = Pi × Pk(or
PiPk = Pi⋊Pk) hold. NowK = PiPjPk is a proper subgroup of G and hence an
SQNS-group since we assume that |π(G)| > 3. However, Pi is obvious neither
s-quasinormal nor self-normalizing in K, a contradiction. This contradiction
shows that |π(G)| ≤ 3. The proof is completed. �

The following theorem classifies all minimal non-SQNS-groups whose order
having two prime divisors.

Theorem 3.3. Let G be a minimal non-SQNS-group with |π(G)| = 2. Then

one of the following holds:
(1) G = P ⋊Q is a minimal non-nilpotent group, and P is non-cyclic.

(2) G = Cq ⋊ (Cpn × Cp), Φ(Cpn)Cp = Z(G).
(3) G = Cq ⋊Q8, Q8 induces an automorphism of order 2 on Cq.

(4) G = Cq ⋊Mpn+1, CM
pn+1

(Cq) ∼= Mpn .

(5) G = Cqn ⋊ Cpm , m ≥ 2, Φ(Φ(P )) = Z(G).
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(6) G = 〈a, b, c | aq
m

= bq
m

= 1, cp
n

= 1, ab = ba, ac = au, bc = bv,
u 6≡ v (mod qm), u ≡ v (mod qm−1), up ≡ vp ≡ 1 (mod qm)〉. Furthermore,

u 6≡ 1 (mod q) and v 6≡ 1 (mod q) if m ≥ 2.
(7) G = 〈x, y1, y2, . . . , yb | xpa

= yq1 = yq2 = · · · = yqb , yiyj = yjyi, i, j =

1, 2, . . . , b, yxi = yi+1, i = 1, 2, . . . , b − 1, yxb = yd1

1 yd2

2 · · · ydb

b 〉, f(z) = zb −
dbz

b−1 − · · · − d2z − d1 is irreducible in Fq. Moreover, let

A =









0 1 0 · · · 0
0 0 1 · · · 0
· · · · · · · · · · · · · · ·
d1 d2 d3 · · · db









.

Then there exists λ 6≡ 1 (mod q), such that Ap = λI (where I is the identity

matrix) and λp ≡ 1 (mod q).
In the above (2)-(7), p and q are distinct primes and p < q.

Proof. Let G = PQ, where P ∈ Sylp(G) and Q ∈ Sylq(G). Without loss of
generality, we always assume that p < q. Since G is solvable, there is a normal
maximal subgroup M of G such that |G : M | = p or q. By our assumption, M
is an SQNS-group. Hence we can get that either P or Q must be normal in
G.

Case 1. P is normal in G.
By Lemma 2.1, P is not a cyclic subgroup. Let Q1 and Q2 be two different

maximal subgroups of Q. Then PQ1 and PQ2 are all SQNS-groups by hy-
pothesis. By Lemma 2.5, both PQ1 and PQ2 are nilpotent, which implies that
G is nilpotent, a contradiction. Therefore we get Q is cyclic. Since Φ(Q)P is an
SQNS-group, we have that Φ(Q)P = Φ(Q)× P . Thus Φ(Q) ≤ Z(G). Again
by Lemma 2.5, we know that Q acts non-trivially on P , but acts trivially on
every Q-invariant proper subgroup of P . It is easy to see that, G is a minimal
non-nilpotent-group in this case. That is, G is of type (1).

Case 2. Q is normal in G.
(2.1) Suppose in the first place that P is non-cyclic. By Lemma 2.5, we know

that P acts non-trivially on Q, but acts trivially on every P -invariant proper
subgroup of Q. Applying Hall-Higman-Reduction Theorem, we can get that
exp(Q) = q. Assume that |Q| > q. Let P1 and P2 be two maximal subgroups
of P . Then both P1Q and P2Q are SQNS-groups. Hence Pi(i = 1, 2) induces
a fixed-point-free power automorphism on Q, which implies that the action of
P on Q is reducible. Hence CQ(P ) > 1. On the other hand, P1Q or P2Q must
be non-nilpotent by Lemma 2.5. Thus we have that P has at most one non-
cyclic maximal subgroup and either CQ(P1) = 1 or CQ(P2) = 1, which leads to
CQ(P ) = 1, a contradiction. Thus we have |Q| = q. Since P has at most one
non-cyclic maximal subgroup, P is isomorphic to the quaternion group Q8 or
Cpn × Cp or P ∼= Mpn+1 (see [3, Lemma 2.9]).

If P ∼= Cpn ×Cp, then G ∼= Cq ⋊ (Cpn ×Cp), Φ(Cpn)Cp = Z(G). That is, G
is of type (2).
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If P ∼= Q8, then G ∼= Cq ⋊Q8, Q8 induces an automorphism of order 2 on
Cq. That is, G is of type (3).

If P ∼= Mpn+1, then G ∼= Cq ⋊Mpn+1 , CM
pn+1

(Cq) ∼= Mpn . That is, G is of

type (4).
(2.2) Suppose that P is cyclic and the action of P on Q/Φ(Q) is reducible.

Let P = 〈c〉 and Q = 〈x1, x2, . . . , xn〉. Since the action of P on Q/Φ(Q) is
reducible, we have that Q/Φ(Q) is P -completely reducible. If n ≥ 3, we claim
that CQ(P ) = 1. Suppose that CQ(P ) > 1. Let x ∈ CQ(P ). Then P 〈x, xi〉
is a nilpotent SQNS-group by Lemma 2.5, where i = 1, 2, . . . , n. It implies
that PQ is nilpotent, a contradiction. Hence CQ(P ) = 1. Since the action of
P on 〈xi, xj〉 is invariable, we have xixj = xjxi by Lemma 2.5. It implies that
Q is abelian and hence Q = 〈x1〉 × 〈x2〉 × · · · × 〈xn〉. Let o(xi) = qmi and let
qm1 = exp(Q). Since CQ(P ) = 1, P 〈x1, xi〉 is a non-nilpotent SQNS-group.
Thus there exists a natural number w satisfying xc = xw for each x ∈ 〈x1, xi〉.
Then w ≡ u1 (mod qm1) and w ≡ ui (mod qmi) for some natural numbers
u1 and ui. Thus we get ui ≡ u1 (mod qmi). It follows that P induces a
fixed-point-free power automorphism of order p on Q and hence G itself is an
SQNS-group, a contradiction. Therefore we have n ≤ 2.

If Q is cyclic, then we have |P | ≥ p2 by the structure of SQNS-groups.
Hence G = Cqn ⋊ Cpm , m ≥ 2, Φ(Φ(P )) = Z(G). That is, G is of type (5).

If Q is non-cyclic and Ω1(Q) = Q, then Q is an elementary abelian q-group.
In this case, G = 〈a, b, c〉, aq = bq = cp

m

= 1, ab = ba, ac = ai, bc = bj, i 6≡
j (mod q), ip ≡ jp ≡ 1 (mod q). That is, G is of type (6).

If Q is non-cyclic and Ω1(Q) 6= Q, then we can get CQ(P ) = 1 by Lemma 2.2.
Let Q = 〈a, b〉. Then 〈aΦ(Q)〉 and 〈bΦ(Q)〉 are P -invariant. Hence 〈aΦ(Q)〉
and 〈bΦ(Q)〉 are all abelian by Lemma 2.5, it follows that G is abelian or
minimal non-abelian.

If Q is abelian, let Q = 〈a, b〉, aq
m

= 1, bq
n

= 1 and P = 〈c〉, ac = au, bc = bv.
We claim that m = n. Indeed, let m < n, and Q1 = 〈a, bq〉. Then PQ1 =
Q1 ⋊ P is an SQNS-group. Hence there exists a natural number w such that
ac = aw, (bq)c = (bp)w by Lemma 2.5. It follows that u ≡ w (mod qm) and qv ≡
qw (mod qn). Thus v ≡ w (mod qn−1). Since m < n, we get v ≡ w (mod qm)
and hence u ≡ v (mod qm). Therefore we have xc = xv for every x ∈ Q, which
implies that P induces a fixed-point-free power automorphism of order p on Q,
a contradiction. Hence m = n and then G = 〈a, b, c〉, aq

m

= bq
m

= 1, cp
n

= 1,
ab = ba, ac = au, bc = bv. u 6≡ v (mod qm), u ≡ v (mod qm−1), up ≡ vp ≡
1 (mod qm), u 6≡ 1 (mod q), v 6≡ 1 (mod q),m ≥ 2. That is, G is of type (6).

If Q is minimal non-abelian, then by [7], we have Q = 〈a, b〉, aq
m

= bq
n

=

1, ab = a1+qm−1

,m ≥ 2. Let P = 〈c〉, ac = biaj , bc = buav. Then (aq)c =
bqiaqj , (bq)c = bquaqv. On the other hand, qn−1|i, qm−1|v, and (q, j) = 1,

(q, u) = 1. So (biaj)1+qm−1

= bi+iqm−1

aj+jqm−1

and (biaj)b
uav

= biaj+juqm−1

.

Since P induces an automorphism onQ, we get bi+iqm−1

aj+jqm−1

=biaj+juqm−1

.
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Thus j+ jqm−1 ≡ j+ juqm−1 (mod qm). Hence u ≡ 1 (mod q), it follows that

(bq
n−1

)c = bq
n−1

, contrary to CQ(P ) = 1.
(2.3) Suppose that P is cyclic and the action of P on Q/Φ(Q) is irreducible.
If Q is cyclic, then G is of type (5).
Suppose that Q is not cyclic. Since the action of P on Q/Φ(Q) is irreducible,

all P -invariant subgroups of Q are contained in Φ(Q).
If CQ(P ) 6= 1, then CQ(P ) is contained in Φ(Q). Hence P ≤ CG(Φ(Q)), it

implies that P acts non-trivially on Q, but acts trivially on every P -invariant
subgroup of Q, hence exp(Q) = q. On the other hand, 1 6= CQ(P ) ≤ Φ(Q), so
Q is non-abelian, furthermore, Q ≤ CG(Φ(P )). It implies that G is a minimal
non-nilpotent group. That is, G is of type (1).

If CQ(P ) = 1, we claim that Φ(Q) = 1. Otherwise, PΦ(Q) is a non-nilpotent
SQNS-group. By Lemma 2.5 we have p|q − 1. On the other hand, if Q is
abelian, then Ω1(Q) 6= Q, hence P acts on Ω1(Q) reducibly by Lemma 2.5,
furthermore P acts reducibly on Q as well, a contradiction. So Q is non-
abelian and Φ(P ) acts trivially on Q. Now let P = P/Φ(P ), Q = Q/Φ(Q).
Then Q ⋊ P̄ = 〈x, y1, y2, . . . , yb | xp = yq1 = yq2 = · · · = yqb , yiyj = yjyi, i, j =

1, 2, . . . , b, yxi = yi+1, i = 1, 2, . . . , b − 1, yxb = yd1

1 yd2

2 · · · ydb

b 〉, where f(z) =

zb − dbz
b−1 − · · · − d2z − d1 is irreducible in Fq and f(z)|zp − 1 by [7]. Since

p|q − 1, zp − 1|zq−1 − 1. However, zq−1 − 1 is completely decomposable in
Fq, which implies that f(z) is completely decomposable in Fq, a contradiction.
Hence our claim holds and so Q is elementary abelian.

If Φ(P ) acts trivially on Q, then G is a minimal non-nilpotent group. That
is, G is of type (1).

Suppose that Φ(P ) acts non-trivially on Q. Let P = 〈x | xpa

= 1〉. Then
Q is a FqP -module. By choosing a suitable basis of Q, we have that the
representation matrix of x is the following type:

A =









0 1 0 · · · 0
0 0 1 · · · 0
· · · · · · · · · · · · · · ·
d1 d2 d3 · · · db









.

Thus we obtain that G = 〈x, y1, y2, . . . , yb | xpa

= yq1 = yq2 = · · · = yqb , yiyj =

yjyi, i, j = 1, 2, . . . , b, yxi = yi+1, i = 1, 2, . . . , b−1, yxb = yd1

1 yd2

2 · · · ydb

b 〉. Since Q
is a irreducible FqP -module, the characteristic polynomial f(z) = zb−dbz

b−1−
· · · − d2z − d1 of A is irreducible in Fq. On the other hand, Φ(P )Q is not
nilpotent. Hence 〈xp〉 induces a fixed-point-free power automorphism of order

p on Q and 〈xp2

〉 acts trivially on Q by Lemma 2.5. Thus there is a λ such that
λ 6≡ 1(mod q), and Ap = λI (where I is the identity matrix) and λp ≡ 1(mod q).
That is, G is of type (7).

The proof is completed. �

The following theorem classifies all minimal non-SQNS-groups whose order
having three prime divisors.
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Theorem 3.4. Let G be a minimal non-SQNS-group with |π(G)| = 3. Then

one of the following holds:
(1) G = (Cq × Cr)⋊ Cpm , and Z(G) = Φ(Cpm)× Cr.

(2) G = (Cr ⋊Cqm)⋊Cp, and Z(G) = Φ(Cqm ) and Cp acts trivially on Cr.

(3) G = Cr ⋊ (Cq × Cp), and Z(G) = 1.

Proof. Since G is solvable, we may assume that G = PQR, where P ∈ Sylp(G),
Q ∈ Sylq(G), R ∈ Sylr(G). Without loss of generality, we always let p be the
smallest prime divisor of |G|. If P is non-cyclic, then PQ and PR are all nilpo-
tent by Lemma 2.5. Hence P is normal in G. Let P1 be a maximal subgroup
of P . Then P1QR is an SQNS-group and hence we get P1QR is nilpotent by
Lemma 2.5, which implies that G itself is nilpotent, a contradiction. Thus we
have that P is cyclic. By Lemma 2.1, QREG. Since QR is an SQNS-group,
we have by Lemma 2.5 that RQ is either a nilpotent group or a group of the
type (2) in Lemma 2.5.

Case 1. RQ is a nilpotent group.
In this case both Q and R is normal in G. If PQ = Q⋊P and PR = R⋊P ,

then we have that P induces a fixed-point-free power automorphism of order
p on Q and R and NG(P ) = P by Lemma 2.5. Let z ∈ R is an element of
order r. If 〈z〉PQ is an SQNS-group, then 〈z〉QP = (〈z〉 × Q) ⋊ P . Let
P = 〈x〉 and yz be any element of 〈z〉Q, where y ∈ Q. Then (yz)x = (yz)k for
a positive integer k. On the other hand, we have yx = ym and zx = zn. Thus
ymzn = (yz)x = (yz)k = ymzk. Therefore ym = yk and zn = zk, which implies
that P induces a fixed-point-free power automorphism of order p on QR, a
contradiction. Hence R is of prime order. By the same argument we have Q
is of prime order too. Thus G = (Cq × Cr) ⋊ Cpm . However, G is obvious an
SQNS-group, a contradiction.

If PQ = Q⋊ P and PR = R× P (or PQ = Q× P and PR = R⋊ P ), then
NG(P ) = PR. Let z ∈ R be an element of order r. If 〈z〉PQ is an SQNS-
group, then 〈z〉QP = (〈z〉 × Q) ⋊ P . But in this case we have N〈z〉QP (P ) =
P 〈z〉 > P , a contradiction. Hence R is of prime order. By the same argument
we have Q is of prime order too. Thus G = (Cq × Cr) ⋊ Cpm , and Z(G) =
Φ(Cpm)× Cr. That is, G is of type (1).

Case 2. RQ is a group of the type (2) in Lemma 2.5.
Without loss of generality, we assume that q < r. Then R � NG(Q). By the

same reason as in Case 1, we can get that P and R are both of prime order. If
P acts trivially on R, then we have P acts trivially on Φ(Q) since PΦ(Q)R is
an SQNS-group. Thus G = (Cr ⋊ Cqm )⋊ Cp, and Z(G) = Φ(Cqm ). That is,
G is of type (2).

If P acts non-trivially on R, then either Φ(Q) = 1 or P acts non-trivially on
Φ(Q). Thus G = (Cr ⋊ Cqm) ⋊ Cp, and Z(G) = 1. Let V = Cqm ⋊ Cp. Then
V/CV (Cr) ≤ Aut(Cr) is a cyclic group. If P acts non-trivially on Φ(Q), then
we can get a contradiction since V/CV (Cr) is not cyclic. If Φ(Q) = 1, then we
obtain that CqCp = Cq × Cp. That is, G is of type (3).
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Thus our proof is completed. �
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[1] K. Doerk, Minimal nicht überauflösbare endliche Gruppen, Math. Z. 91 (1966), 198–205.
[2] D. Gorenstein, Finite Groups, New York, Harper & Row press, 1980.
[3] P. Guo and X. Guo, On minimal non-MSN-groups, Front. Math. China 6 (2011), no. 5,

847–854.
[4] H. Kurzweil and B. Stellmacher, The Theory of Finite Groups, New York, Springer-

Verlag, 2004.
[5] T. J. Laffey, A Lemma on finite p-group and some consequences, Proc. Cambridge

Philos. Soc. 75 (1974), 133–137.
[6] K. Lu and Z. Hao, Finite groups with only s-quasinormal and self-normalzing subgroups,

Soochow J. Math. 24 (1998), no. 1, 9–12.
[7] G. A. Miller and H. C. Moreno, Non-abelian groups in which every subgroup is abelian,

Trans. Amer. Math. Soc. 4 (1903), no. 4, 398–404.
[8] J. G. Thompson, Nonsolvable finite groups all of whose local subgroups are solvable,

Bull. Amer. Math. Soc. 74 (1968), 383–437.

Zhangjia Han

School of Applied Mathematics

Chengdu University of Information Technology

Sichuan 610225, P. R. China

E-mail address: hzjmm11@163.com

Huaguo Shi

Sichuan Vocational and Technical College

Sichuan 629000, P. R. China

E-mail address: shihuaguo@126.com

Wei Zhou

School of Mathematics and Statistics

Southwest University

Chongqing 400715, P. R. China

E-mail address: zh−great@swu.edu.cn


