FINITE GROUPS WHICH ARE MINIMAL WITH RESPECT TO S-QUASINORMALITY AND SELF-NORMALITY

ZHANGJIA HAN, HUAGUO SHI, AND WEI ZHOU

ABSTRACT. An \mathcal{SQNS} -group G is a group in which every proper subgroup of G is either s-quasinormal or self-normalizing and a minimal non- \mathcal{SQNS} -group is a group which is not an \mathcal{SQNS} -group but all of whose proper subgroups are \mathcal{SQNS} -groups. In this note all the finite minimal non- \mathcal{SQNS} -groups are determined.

1. Introduction

Throughout this paper, only finite groups are considered.

Given a group theoretical property \mathcal{P} , a group belonging to a class of groups \mathcal{P} is called a \mathcal{P} -group and the other groups are called non- \mathcal{P} -groups. A minimal non- \mathcal{P} -group is a non- \mathcal{P} -group all of whose proper subgroups are \mathcal{P} -groups. The problem of determining all the finite minimal non- \mathcal{P} -groups has been studied by several authors and there are many remarkable examples about the minimal non- \mathcal{P} -groups: minimal non-abelian groups (Miller and Moreno [7]), minimal non-nilpotent groups (Schmidt), minimal non-supersolvable groups ([1]) and minimal non- \mathcal{P} -nilpotent groups (Itô).

Recall that a subgroup H of a group G is said to be s-quasinormal in G if HK = KH for any Sylow subgroup K of G. Let \mathcal{SQNS} denotes the class of all groups in which every proper subgroup is either s-quasinormal or self-normalizing. Our principal object here is the classification of all the finite minimal non- \mathcal{SQNS} -groups. Combining Theorems 3.3 and 3.4 in this paper, we get the following:

Main Theorem. Let G be a minimal non-SQNS-group. Then G is solvable and is isomorphic to one of the following groups:

Received January 11, 2013.

 $^{2010\} Mathematics\ Subject\ Classification.\ 20 D35,\ 20 E34.$

Key words and phrases. s-quasinormal subgroups, self-normalizing subgroups, SQNS-groups, minimal non-SQNS-groups.

This work is supported by the National Scientific Foundation of China(No:11271301) and NSFC-Henan Joint Fund(U1204101) and Scientific Research Foundation of SiChuan Provincial Education Department(No:11ZB174) and Scientific Research Foundation of SiChuan Provincial Education Department(No:12ZB018).

- (1) $G = P \rtimes Q$ is a minimal non-nilpotent group, and P is non-cyclic.
- (2) $G = C_q \rtimes (C_{p^n} \times C_p)$, $\Phi(C_{p^n})C_p = Z(G)$. (3) $G = C_q \rtimes Q_8$, Q_8 induces an automorphism of order 2 on C_q .
- (4) $G = C_q \rtimes M_{p^{n+1}}, C_{M_{n^{n+1}}}(C_q) \cong M_{p^n}.$
- (5) $G = C_{q^n} \rtimes C_{p^m}, \ m \geq 2, \ \Phi(\Phi(P)) = Z(G).$ (6) $G = \langle a, b, c \mid a^{q^m} = b^{q^m} = 1, c^{p^n} = 1, \ ab = ba, \ a^c = a^u, \ b^c = b^v, \ u \not\equiv v \pmod{q^m}, \ u \equiv v \pmod{q^{m-1}}, \ u^p \equiv v^p \equiv 1 \pmod{q^m}.$ Furthermore, $u \not\equiv 1 \pmod{q}$ and $v \not\equiv 1 \pmod{q}$ if $m \ge 2$.
- (7) $G = \langle x, y_1, y_2, \dots, y_b \mid x^{p^a} = y_1^q = y_2^q = \dots = y_b^q, y_i y_j = y_j y_i, i, j = 1, 2, \dots, b, y_i^x = y_{i+1}, i = 1, 2, \dots, b 1, y_b^x = y_1^{d_1} y_2^{d_2} \dots y_b^{d_b} \rangle, f(z) = z^b d_b z^{b-1} \dots d_2 z d_1 \text{ is irreducible in } F_q. \text{ Moreover, let}$

$$A = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ d_1 & d_2 & d_3 & \cdots & d_b \end{bmatrix}.$$

Then there exists $\lambda \not\equiv 1 \pmod{q}$, such that $A^p = \lambda I$ (where I is the identity matrix) and $\lambda^p \equiv 1 \pmod{q}$.

In the above (2)-(7), p and q are distinct primes and p < q.

- (8) $G = (C_q \times C_r) \rtimes C_{p^m}$, and $Z(G) = \Phi(C_{p^m}) \times C_r$.
- (9) $G = (C_r \rtimes C_{q^m}) \rtimes C_p$, and $Z(G) = \Phi(C_{q^m})$ and C_p acts trivially on C_r .
- (10) $G = C_r \rtimes (C_q \times C_p)$, and Z(G) = 1.

We shall use the established terminology and notation in [2] and [4]. For example, $A \rtimes P$ denotes the semidirect product of A and P; C_n denotes a cyclic group of order n and $\pi(G)$ denotes the set of all prime divisors of |G|.

2. Some preliminaries

In this section, we collect some lemmas which will be used in the following.

Lemma 2.1 ([4, 7.2.2]). Suppose that the Sylow p-subgroups of G are cyclic, where p is the smallest prime divisor of |G|. Then G has a normal p-complem-

Lemma 2.2 ([5]). Suppose that p'-group H acts on a p-group G. Let

$$\Omega(G) = \left\{ \begin{array}{ll} \Omega_1(G) & p > 2, \\ \Omega_2(G) & p = 2. \end{array} \right.$$

If H acts trivially on $\Omega(G)$, then H acts trivially on G as well.

Lemma 2.3 (Maschke's Theorem, [4, 8.4.6]). Suppose that the action of A on an abelian group G is coprime and H is an A-invariant direct factor of G. Then H has an A-invariant complement in G.

Lemma 2.4 ([8]). If G is a minimal non-abelian simple group, then G is isomorphic to one of the following simple groups:

- (1) PSL(2, p), where p is a prime with p > 3 and $5 \nmid p^2 1$.
- (2) $PSL(2, 2^q)$, where q is a prime.
- (3) $PSL(2,3^q)$, where q is a prime.
- (4) PSL(3,3).
- (5) The Suzuki group $Sz(2^q)$, where q is an odd prime.

In proving our main theorem, the following result will be frequently used.

Lemma 2.5 ([6, Theorem 7]). Let G be a finite group. Then all subgroups of G are either s-quasinormal or self-normalizing if and only if either

- (1) G is nilpotent, or
- (2) $G = H \times P$, where H is an abelian normal Hall p'-subgroup and $P = \langle x \rangle \in Syl_p(G)$, $\langle x^p \rangle = O_p(G) = Z(G)$, where p is the minimal prime dividing the order of G. Furthermore, x induces a fixed-point-free power automorphism of order p on H.

Let G be a group. By the proof of [6, Theorem 7], we know that the following statements are equivalent:

- 1. G is an SQNS-group.
- 2. Every subgroup of prime power order of G is either s-quasinormal in G or self-normalizing.

We will use above fact freely in our following proof.

3. Minimal non-SQNS-groups

In this section, we classify finite minimal non-SQNS-groups.

Lemma 3.1. Let G be a minimal non-SQNS-group. Then G is solvable.

Proof. Suppose that G is not solvable. By Lemma 2.5, every proper subgroup of G is solvable and hence $G/\Phi(G)$ is a minimal simple group. Let H be the 2-complement of $\Phi(G)$. Then $H \subseteq G$ and H is nilpotent since H is an SQNS-group. We have following claims.

(1) H = 1.

Suppose that $H \neq 1$. Let $P \in Syl_p(H)$, where p is any prime in $\pi(H)$. Then $P \unlhd G$. Let $S_2 \in Syl_2(G)$ and $K = S_2P$. Then K is a proper subgroup of G, and hence K is an \mathcal{SQNS} -group by hypothesis. If K is an \mathcal{SQNS} -group as in (2) of Lemma 2.5, then S_2 is cyclic, which concludes that G has normal 2-complement, a contradiction. Hence we may assume that K is nilpotent. But it follows in this case that $S_2 \leq C_G(P) \unlhd G$. Using the simplicity of $G/\Phi(G)$, we conclude that $S_2 \leq C_G(P)\Phi(G)$, which concludes that G is solvable, a contradiction.

(2) Every subgroup of order $2^m p$ (p an odd prime) of $\overline{G} = G/\Phi(G)$ is 2-nilpotent.

Assume that G possesses a subgroup L containing $S_0 = \Phi(G)$ such that L/S_0 is not a 2-nilpotent group of order $2^m p$. Then L contains a minimal non-2-nilpotent subgroup D with order $2^n p$ for some natural number n. Hence

 $D = S^*P$ is a minimal non-nilpotent group with a normal Sylow 2-subgroup S^* and |P| = p. Since G is non-solvable, D is a proper subgroup of G and so D is an SQNS-group by the hypothesis. Hence D is nilpotent by Lemma 2.5, a contradiction.

(3) Conclusion.

Now, we assert that there is no simple group listed in Lemma 2.4 isomorphic to \overline{G} . And then we get that G is solvable. In fact, if \overline{G} is isomorphic to one of $PSL(2,p), PSL(2,3^q)$ and PSL(3,3), then \overline{G} has a subgroup isomorphic to A_4 , the alternating group of degree 4, a contradiction to (2). If $\overline{G} \cong PSL(2,2^q)$ or $Sz(2^q)$, then \overline{G} is a Zassenhaus group of odd degree and the stabilizer of a point is a Frobenius group with kernel a 2-group, again a contradiction to (2). Hence \overline{G} cannot be any one of $PSL(2,2^q)$ and $Sz(2^q)$ as well. Thus the proof is completed.

Lemma 3.2. Let G be a minimal non-SQNS-group. Then $|\pi(G)| \leq 3$.

Proof. Suppose that $|\pi(G)| > 3$. Let $\{P_1, P_2, \ldots, P_k, \ldots, P_r\}, r > 3$ be a Sylow basis of G, where $P_i \in Syl_{p_i}(G)$, i = 1, 2, ..., r. Since G is not an SQNS-group, there exists a subgroup $P_i^* \leq P_i$ (for some i) such that P_i^* is neither s-quasinormal nor self-normalizing by Lemma 2.5. By hypothesis $P_i P_j$ is an SQNS-group for each $i \neq j \in \{1, 2, ..., r\}$. If P_i is non-cyclic, then by Lemma 2.5, P_i is normal in P_iP_j , which implies that P_i is normal in G and hence P_i^* is a proper subgroup of P_i . Choose a $P_k \in \{P_1, P_2, \dots, P_k, \dots, P_r\}$ such that $P_i^* P_k \neq P_k P_i^*$, where $k \neq i, j$. Let $H = P_i P_j P_k$. Then H is an SQNS-group. However, P_i^* is neither s-quasinormal nor self-normalizing in H, a contradiction. Hence we may assume that P_i is cyclic. If $P_i^* \neq P_i$, then by the structure of SQNS-groups, P_i^* is normal in P_iP_j for each $j \neq i$, which implies that P_i^* is normal in G, a contradiction. If $P_i^* = P_i$, then there exists $j \neq k \in \{1, 2, \dots, r\}$ such that both $P_i P_j = P_j \rtimes P_i$ and $P_i P_k = P_i \times P_k$ (or $P_i P_k = P_i \rtimes P_k$) hold. Now $K = P_i P_j P_k$ is a proper subgroup of G and hence an SQNS-group since we assume that $|\pi(G)| > 3$. However, P_i is obvious neither s-quasinormal nor self-normalizing in K, a contradiction. This contradiction shows that $|\pi(G)| \leq 3$. The proof is completed.

The following theorem classifies all minimal non- \mathcal{SQNS} -groups whose order having two prime divisors.

Theorem 3.3. Let G be a minimal non-SQNS-group with $|\pi(G)| = 2$. Then one of the following holds:

- (1) $G = P \times Q$ is a minimal non-nilpotent group, and P is non-cyclic.
- (2) $G = C_q \rtimes (C_{p^n} \times C_p), \ \Phi(C_{p^n})C_p = Z(G).$
- (3) $G = C_q \rtimes Q_8$, Q_8 induces an automorphism of order 2 on C_q .
- (4) $G = C_q \rtimes M_{p^{n+1}}, C_{M_{p^{n+1}}}(C_q) \cong M_{p^n}.$
- (5) $G = C_{q^n} \rtimes C_{p^m}, m \ge 2, \Phi(\Phi(P)) = Z(G).$

(6) $G=\langle a,b,c\mid a^{q^m}=b^{q^m}=1,c^{p^n}=1,\ ab=ba,\ a^c=a^u,\ b^c=b^v,\ u\not\equiv v\ (\mathrm{mod}\ q^m),\ u\equiv v\ (\mathrm{mod}\ q^{m-1}),\ u^p\equiv v^p\equiv 1\ (\mathrm{mod}\ q^m)\rangle.$ Furthermore, $u\not\equiv 1\ (\mathrm{mod}\ q)\ and\ v\not\equiv 1\ (\mathrm{mod}\ q)\ if\ m\geq 2.$

(7) $G = \langle x, y_1, y_2, \dots, y_b \mid x^{p^a} = y_1^q = y_2^q = \dots = y_b^q, y_i y_j = y_j y_i, i, j = 1, 2, \dots, b, y_i^x = y_{i+1}, i = 1, 2, \dots, b - 1, y_b^x = y_1^{d_1} y_2^{d_2} \dots y_b^{d_b} \rangle, \ f(z) = z^b - d_b z^{b-1} - \dots - d_2 z - d_1 \ is \ irreducible \ in \ F_q. \ Moreover, \ let$

$$A = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ d_1 & d_2 & d_3 & \cdots & d_b \end{bmatrix}.$$

Then there exists $\lambda \not\equiv 1 \pmod{q}$, such that $A^p = \lambda I$ (where I is the identity matrix) and $\lambda^p \equiv 1 \pmod{q}$.

In the above (2)-(7), p and q are distinct primes and p < q.

Proof. Let G = PQ, where $P \in Syl_p(G)$ and $Q \in Syl_q(G)$. Without loss of generality, we always assume that p < q. Since G is solvable, there is a normal maximal subgroup M of G such that |G:M| = p or q. By our assumption, M is an \mathcal{SQNS} -group. Hence we can get that either P or Q must be normal in G.

Case 1. P is normal in G.

By Lemma 2.1, P is not a cyclic subgroup. Let Q_1 and Q_2 be two different maximal subgroups of Q. Then PQ_1 and PQ_2 are all \mathcal{SQNS} -groups by hypothesis. By Lemma 2.5, both PQ_1 and PQ_2 are nilpotent, which implies that G is nilpotent, a contradiction. Therefore we get Q is cyclic. Since $\Phi(Q)P$ is an \mathcal{SQNS} -group, we have that $\Phi(Q)P = \Phi(Q) \times P$. Thus $\Phi(Q) \leq Z(G)$. Again by Lemma 2.5, we know that Q acts non-trivially on P, but acts trivially on every Q-invariant proper subgroup of P. It is easy to see that, G is a minimal non-nilpotent-group in this case. That is, G is of type (1).

Case 2. Q is normal in G.

(2.1) Suppose in the first place that P is non-cyclic. By Lemma 2.5, we know that P acts non-trivially on Q, but acts trivially on every P-invariant proper subgroup of Q. Applying Hall-Higman-Reduction Theorem, we can get that $\exp(Q)=q$. Assume that |Q|>q. Let P_1 and P_2 be two maximal subgroups of P. Then both P_1Q and P_2Q are \mathcal{SQNS} -groups. Hence $P_i(i=1,2)$ induces a fixed-point-free power automorphism on Q, which implies that the action of P on Q is reducible. Hence $C_Q(P)>1$. On the other hand, P_1Q or P_2Q must be non-nilpotent by Lemma 2.5. Thus we have that P has at most one non-cyclic maximal subgroup and either $C_Q(P_1)=1$ or $C_Q(P_2)=1$, which leads to $C_Q(P)=1$, a contradiction. Thus we have |Q|=q. Since P has at most one non-cyclic maximal subgroup, P is isomorphic to the quaternion group Q_8 or $C_{p^n}\times C_p$ or $P\cong M_{p^{n+1}}$ (see [3, Lemma 2.9]).

 $C_{p^n} \times C_p$ or $P \cong M_{p^{n+1}}$ (see [3, Lemma 2.9]). If $P \cong C_{p^n} \times C_p$, then $G \cong C_q \rtimes (C_{p^n} \times C_p)$, $\Phi(C_{p^n})C_p = Z(G)$. That is, G is of type (2). If $P \cong Q_8$, then $G \cong C_q \rtimes Q_8$, Q_8 induces an automorphism of order 2 on C_q . That is, G is of type (3).

If $P \cong M_{p^{n+1}}$, then $G \cong C_q \rtimes M_{p^{n+1}}$, $C_{M_{p^{n+1}}}(C_q) \cong M_{p^n}$. That is, G is of type (4).

(2.2) Suppose that P is cyclic and the action of P on $Q/\Phi(Q)$ is reducible. Let $P=\langle c\rangle$ and $Q=\langle x_1,x_2,\ldots,x_n\rangle$. Since the action of P on $Q/\Phi(Q)$ is reducible, we have that $Q/\Phi(Q)$ is P-completely reducible. If $n\geq 3$, we claim that $C_Q(P)=1$. Suppose that $C_Q(P)>1$. Let $x\in C_Q(P)$. Then $P\langle x,x_i\rangle$ is a nilpotent \mathcal{SQNS} -group by Lemma 2.5, where $i=1,2,\ldots,n$. It implies that PQ is nilpotent, a contradiction. Hence $C_Q(P)=1$. Since the action of P on $\langle x_i,x_j\rangle$ is invariable, we have $x_ix_j=x_jx_i$ by Lemma 2.5. It implies that Q is abelian and hence $Q=\langle x_1\rangle\times\langle x_2\rangle\times\cdots\times\langle x_n\rangle$. Let $o(x_i)=q^{m_i}$ and let $q^{m_1}=exp(Q)$. Since $C_Q(P)=1$, $P\langle x_1,x_i\rangle$ is a non-nilpotent \mathcal{SQNS} -group. Thus there exists a natural number w satisfying $x^c=x^w$ for each $x\in\langle x_1,x_i\rangle$. Then $w\equiv u_1\pmod{q^{m_1}}$ and $w\equiv u_1\pmod{q^{m_1}}$ for some natural numbers u_1 and u_i . Thus we get $u_i\equiv u_1\pmod{q^{m_i}}$. It follows that P induces a fixed-point-free power automorphism of order p on Q and hence G itself is an \mathcal{SQNS} -group, a contradiction. Therefore we have $n\leq 2$.

If Q is cyclic, then we have $|P| \geq p^2$ by the structure of \mathcal{SQNS} -groups. Hence $G = C_{q^n} \rtimes C_{p^m}$, $m \geq 2$, $\Phi(\Phi(P)) = Z(G)$. That is, G is of type (5).

If Q is non-cyclic and $\Omega_1(Q) = Q$, then Q is an elementary abelian q-group. In this case, $G = \langle a, b, c \rangle, a^q = b^q = c^{p^m} = 1, ab = ba, a^c = a^i, b^c = b^j, i \not\equiv j \pmod{q}, i^p \equiv j^p \equiv 1 \pmod{q}$. That is, G is of type (6).

If Q is non-cyclic and $\Omega_1(Q) \neq Q$, then we can get $C_Q(P) = 1$ by Lemma 2.2. Let $Q = \langle a, b \rangle$. Then $\langle a\Phi(Q) \rangle$ and $\langle b\Phi(Q) \rangle$ are P-invariant. Hence $\langle a\Phi(Q) \rangle$ and $\langle b\Phi(Q) \rangle$ are all abelian by Lemma 2.5, it follows that G is abelian or minimal non-abelian.

If Q is abelian, let $Q = \langle a,b \rangle$, $a^{q^m} = 1$, $b^{q^n} = 1$ and $P = \langle c \rangle$, $a^c = a^u$, $b^c = b^v$. We claim that m = n. Indeed, let m < n, and $Q_1 = \langle a,b^q \rangle$. Then $PQ_1 = Q_1 \rtimes P$ is an \mathcal{SQNS} -group. Hence there exists a natural number w such that $a^c = a^w$, $(b^q)^c = (b^p)^w$ by Lemma 2.5. It follows that $u \equiv w \pmod{q^m}$ and $qv \equiv qw \pmod{q^n}$. Thus $v \equiv w \pmod{q^{n-1}}$. Since m < n, we get $v \equiv w \pmod{q^m}$ and hence $u \equiv v \pmod{q^m}$. Therefore we have $x^c = x^v$ for every $x \in Q$, which implies that P induces a fixed-point-free power automorphism of order p on Q, a contradiction. Hence m = n and then $G = \langle a,b,c \rangle$, $a^{q^m} = b^{q^m} = 1$, $c^{p^n} = 1$, ab = ba, $a^c = a^u$, $b^c = b^v$. $u \not\equiv v \pmod{q^m}$, $u \equiv v \pmod{q^{m-1}}$, $u^p \equiv v^p \equiv 1 \pmod{q^m}$, $u \not\equiv 1 \pmod{q^n}$, $u \not\equiv 1 \pmod{q^n}$, $v \not\equiv 1 \pmod{q}$, $v \not\equiv 1 \pmod{q}$. That is, $v \equiv 1 \pmod{q^n}$.

If Q is minimal non-abelian, then by [7], we have $Q = \langle a,b \rangle, a^{q^m} = b^{q^n} = 1, a^b = a^{1+q^{m-1}}, m \geq 2$. Let $P = \langle c \rangle, a^c = b^i a^j, b^c = b^u a^v$. Then $(a^q)^c = b^{qi}a^{qj}, (b^q)^c = b^{qu}a^{qv}$. On the other hand, $q^{n-1}|i, q^{m-1}|v$, and (q,j) = 1, (q,u) = 1. So $(b^i a^j)^{1+q^{m-1}} = b^{i+iq^{m-1}}a^{j+jq^{m-1}}$ and $(b^i a^j)^{b^u a^v} = b^i a^{j+juq^{m-1}}$. Since P induces an automorphism on Q, we get $b^{i+iq^{m-1}}a^{j+jq^{m-1}} = b^i a^{j+juq^{m-1}}$.

Thus $j + jq^{m-1} \equiv j + juq^{m-1} \pmod{q^m}$. Hence $u \equiv 1 \pmod{q}$, it follows that $(b^{q^{n-1}})^c = b^{q^{n-1}}$, contrary to $C_Q(P) = 1$.

(2.3) Suppose that P is cyclic and the action of P on $Q/\Phi(Q)$ is irreducible. If Q is cyclic, then G is of type (5).

Suppose that Q is not cyclic. Since the action of P on $Q/\Phi(Q)$ is irreducible, all P-invariant subgroups of Q are contained in $\Phi(Q)$.

If $C_Q(P) \neq 1$, then $C_Q(P)$ is contained in $\Phi(Q)$. Hence $P \leq C_G(\Phi(Q))$, it implies that P acts non-trivially on Q, but acts trivially on every P-invariant subgroup of Q, hence $\exp(Q) = q$. On the other hand, $1 \neq C_Q(P) \leq \Phi(Q)$, so Q is non-abelian, furthermore, $Q \leq C_G(\Phi(P))$. It implies that G is a minimal non-nilpotent group. That is, G is of type (1).

If $C_Q(P)=1$, we claim that $\Phi(Q)=1$. Otherwise, $P\Phi(Q)$ is a non-nilpotent \mathcal{SQNS} -group. By Lemma 2.5 we have p|q-1. On the other hand, if Q is abelian, then $\Omega_1(Q)\neq Q$, hence P acts on $\Omega_1(Q)$ reducibly by Lemma 2.5, furthermore P acts reducibly on Q as well, a contradiction. So Q is non-abelian and $\Phi(P)$ acts trivially on Q. Now let $\overline{P}=P/\Phi(P)$, $\overline{Q}=Q/\Phi(Q)$. Then $\overline{Q}\rtimes \overline{P}=\langle x,y_1,y_2,\ldots,y_b\mid x^p=y_1^q=y_2^q=\cdots=y_b^q,y_iy_j=y_jy_i,i,j=1,2,\ldots,b,y_i^x=y_{i+1},i=1,2,\ldots,b-1,y_b^x=y_1^{d_1}y_2^{d_2}\cdots y_b^{d_b}\rangle$, where $f(z)=z^b-d_bz^{b-1}-\cdots-d_2z-d_1$ is irreducible in F_q and $f(z)|z^p-1$ by [7]. Since $p|q-1,z^p-1|z^{q-1}-1$. However, $z^{q-1}-1$ is completely decomposable in F_q , which implies that f(z) is completely decomposable in F_q , a contradiction. Hence our claim holds and so Q is elementary abelian.

If $\Phi(P)$ acts trivially on Q, then G is a minimal non-nilpotent group. That is, G is of type (1).

Suppose that $\Phi(P)$ acts non-trivially on Q. Let $P = \langle x \mid x^{p^a} = 1 \rangle$. Then Q is a F_qP -module. By choosing a suitable basis of Q, we have that the representation matrix of x is the following type:

$$A = \left[\begin{array}{ccccc} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ d_1 & d_2 & d_3 & \cdots & d_b \end{array} \right].$$

Thus we obtain that $G=\langle x,y_1,y_2,\ldots,y_b\mid x^{p^a}=y_1^q=y_2^q=\cdots=y_b^q,y_iy_j=y_jy_i,i,j=1,2,\ldots,b,y_i^x=y_{i+1},i=1,2,\ldots,b-1,y_b^x=y_1^{d_1}y_2^{d_2}\cdots y_b^{d_b}\rangle$. Since Q is a irreducible F_qP -module, the characteristic polynomial $f(z)=z^b-d_bz^{b-1}-\cdots-d_2z-d_1$ of A is irreducible in F_q . On the other hand, $\Phi(P)Q$ is not nilpotent. Hence $\langle x^p \rangle$ induces a fixed-point-free power automorphism of order p on Q and $\langle x^{p^2} \rangle$ acts trivially on Q by Lemma 2.5. Thus there is a λ such that $\lambda \not\equiv 1 \pmod{q}$, and $A^p=\lambda I$ (where I is the identity matrix) and $\lambda^p\equiv 1 \pmod{q}$. That is, G is of type (7).

The proof is completed.

The following theorem classifies all minimal non- \mathcal{SQNS} -groups whose order having three prime divisors.

Theorem 3.4. Let G be a minimal non-SQNS-group with $|\pi(G)| = 3$. Then one of the following holds:

- (1) $G = (C_q \times C_r) \rtimes C_{p^m}$, and $Z(G) = \Phi(C_{p^m}) \times C_r$.
- (2) $G = (C_r \rtimes C_{q^m}) \rtimes C_p$, and $Z(G) = \Phi(C_{q^m})$ and C_p acts trivially on C_r .
- (3) $G = C_r \rtimes (C_q \times C_p)$, and Z(G) = 1.

Proof. Since G is solvable, we may assume that G = PQR, where $P \in Syl_p(G)$, $Q \in Syl_q(G)$, $R \in Syl_r(G)$. Without loss of generality, we always let p be the smallest prime divisor of |G|. If P is non-cyclic, then PQ and PR are all nilpotent by Lemma 2.5. Hence P is normal in G. Let P_1 be a maximal subgroup of P. Then P_1QR is an SQNS-group and hence we get P_1QR is nilpotent by Lemma 2.5, which implies that G itself is nilpotent, a contradiction. Thus we have that P is cyclic. By Lemma 2.1, $QR \subseteq G$. Since QR is an SQNS-group, we have by Lemma 2.5 that RQ is either a nilpotent group or a group of the type (2) in Lemma 2.5.

Case 1. RQ is a nilpotent group.

In this case both Q and R is normal in G. If $PQ = Q \times P$ and $PR = R \times P$, then we have that P induces a fixed-point-free power automorphism of order p on Q and R and $N_G(P) = P$ by Lemma 2.5. Let $z \in R$ is an element of order r. If $\langle z \rangle PQ$ is an \mathcal{SQNS} -group, then $\langle z \rangle QP = (\langle z \rangle \times Q) \times P$. Let $P = \langle x \rangle$ and yz be any element of $\langle z \rangle Q$, where $y \in Q$. Then $(yz)^x = (yz)^k$ for a positive integer k. On the other hand, we have $y^x = y^m$ and $z^x = z^n$. Thus $y^m z^n = (yz)^x = (yz)^k = y^m z^k$. Therefore $y^m = y^k$ and $z^n = z^k$, which implies that P induces a fixed-point-free power automorphism of order p on QR, a contradiction. Hence R is of prime order. By the same argument we have Q is of prime order too. Thus $G = (C_q \times C_r) \times C_{p^m}$. However, G is obvious an \mathcal{SQNS} -group, a contradiction.

If $PQ = Q \rtimes P$ and $PR = R \times P(\text{or }PQ = Q \times P \text{ and }PR = R \rtimes P)$, then $N_G(P) = PR$. Let $z \in R$ be an element of order r. If $\langle z \rangle PQ$ is an \mathcal{SQNS} -group, then $\langle z \rangle QP = (\langle z \rangle \times Q) \rtimes P$. But in this case we have $N_{\langle z \rangle QP}(P) = P\langle z \rangle > P$, a contradiction. Hence R is of prime order. By the same argument we have Q is of prime order too. Thus $G = (C_q \times C_r) \rtimes C_{p^m}$, and $Z(G) = \Phi(C_{p^m}) \times C_r$. That is, G is of type (1).

Case 2. RQ is a group of the type (2) in Lemma 2.5.

Without loss of generality, we assume that q < r. Then $R \nleq N_G(Q)$. By the same reason as in Case 1, we can get that P and R are both of prime order. If P acts trivially on R, then we have P acts trivially on $\Phi(Q)$ since $P\Phi(Q)R$ is an \mathcal{SQNS} -group. Thus $G = (C_r \rtimes C_{q^m}) \rtimes C_p$, and $Z(G) = \Phi(C_{q^m})$. That is, G is of type (2).

If P acts non-trivially on R, then either $\Phi(Q)=1$ or P acts non-trivially on $\Phi(Q)$. Thus $G=(C_r\rtimes C_{q^m})\rtimes C_p$, and Z(G)=1. Let $V=C_{q^m}\rtimes C_p$. Then $V/C_V(C_r)\leq \operatorname{Aut}(C_r)$ is a cyclic group. If P acts non-trivially on $\Phi(Q)$, then we can get a contradiction since $V/C_V(C_r)$ is not cyclic. If $\Phi(Q)=1$, then we obtain that $C_qC_p=C_q\times C_p$. That is, G is of type (3).

Thus our proof is completed.

References

- [1] K. Doerk, Minimal nicht überauflösbare endliche Gruppen, Math. Z. 91 (1966), 198–205.
- [2] D. Gorenstein, Finite Groups, New York, Harper & Row press, 1980.
- $\widetilde{\mbox{[3]}}$ P. Guo and X. Guo, On~minimal~non-MSN-groups, Front. Math. China ${\bf 6}~(2011),$ no. 5, 847-854.
- [4] H. Kurzweil and B. Stellmacher, The Theory of Finite Groups, New York, Springer-Verlag, 2004.
- [5] T. J. Laffey, A Lemma on finite p-group and some consequences, Proc. Cambridge Philos. Soc. 75 (1974), 133–137.
- [6] K. Lu and Z. Hao, Finite groups with only s-quasinormal and self-normalzing subgroups, Soochow J. Math. 24 (1998), no. 1, 9–12.
- [7] G. A. Miller and H. C. Moreno, Non-abelian groups in which every subgroup is abelian, Trans. Amer. Math. Soc. 4 (1903), no. 4, 398–404.
- [8] J. G. Thompson, Nonsolvable finite groups all of whose local subgroups are solvable, Bull. Amer. Math. Soc. 74 (1968), 383–437.

Zhangjia Han

SCHOOL OF APPLIED MATHEMATICS

CHENGDU UNIVERSITY OF INFORMATION TECHNOLOGY

SICHUAN 610225, P. R. CHINA E-mail address: hzjmm11@163.com

Huaguo Shi

SICHUAN VOCATIONAL AND TECHNICAL COLLEGE

SICHUAN 629000, P. R. CHINA $E\text{-}mail\ address:}$ shihuaguo@126.com

Wei Zhou

SCHOOL OF MATHEMATICS AND STATISTICS

SOUTHWEST UNIVERSITY

CHONGQING 400715, P. R. CHINA *E-mail address*: zh_great@swu.edu.cn