• Title/Summary/Keyword: s theorem.

Search Result 1,346, Processing Time 0.027 seconds

Parameter Optimization of the Marine Gyrocompass Follow-up System (자이로콤파스 추종계통의 최적조정)

  • 이상집
    • Journal of the Korean Institute of Navigation
    • /
    • v.5 no.2
    • /
    • pp.49-58
    • /
    • 1981
  • One of the main purposes of the marine gyrocompass follow-up system is to preserve the sensitive part from the wandering error due to the frictional or torsional torque around the vertical axis. This error can be diminished through the rapid follow-up action, which minimizes the relative azimuthal angular displacement between the sensitive and follow-up parts and shortens the duration of the same displacement. But an excessive rapidity of the follow-up action would result in a sustained oscillation to the system. Therefore, to design a new type of the follow-up system, the theoretical annlysis of the problems concerned should be studied systematically by introducing the control theory. This paper suggest a concrete procedure for the optimal adjustment of the gyrocompass follow-up system, utilizing the mathematic model and the stability informations formerly investiaged by the author. For theoptimal determination of the adjustable paramfter K, the performance index(P.I.), ITSE(Intergral of the Time multiplied by the Squared Error) is proposed, namely, P.I. = $\int_{0}^{\infty} t \cdot e^{2}(t)dt$ where t is time and e(t) means control error. Then, the optimal parameter minimizing the performance index is calculated by means of Parseval's theorem and numerical computation, and the validity of the obtained optimal value of the parameter Ka is examined and confirmed through the simulations and experiments. By using, the proposed method, the optimal adjustment can be performed deterministically. But, this can not be expected in the conventional frequency domain analysis. While the Mps of the original system vary to the extent of from 0.98 to 46.27, Mp of the optimal system is evaluated as 1.1 which satisfies the generally accepted frequency domain specification.

  • PDF

Delay Analysis for Seamless Connections in Interworking between MPOA Networks and MPLS Networks (MPOA망과 MPLS 망 연동시 심리스 연결에 대한 지연 분석)

  • Kim, Dong-Ho;Lee, Soong-Hee;Jeon, Hyung-Goo
    • Journal of KIISE:Information Networking
    • /
    • v.29 no.2
    • /
    • pp.147-155
    • /
    • 2002
  • Seamless connection can be a good solution to reduce processing delays in interworking points, a possible big burden to the data transmission in Internet. This paper, therefore, will present several interworking methods which can minimize the delays through seamless connections in interworking between MPOA networks, usually ATM-LANs, and MPLS networks, mainly Internet backbones. We compare characteristics of those networks, propose requirements for interworking, and describe three Interworking methods. Proposed Interworking methods reduce end-to-end transmission delay for seamless connection between ATM VC and LSP, as decreases the number of IP lookup processing in LER. We describe detailed process and characteristic of each interworking method, And we analyze and compare end-to-end delay, using Jackson's network theorem, of proposed interworking methods.

Experimental verification of leverage-type stiffness-controllable tuned mass damper using direct output feedback LQR control with time-delay compensation

  • Chu, Shih-Yu;Yeh, Shih-Wei;Lu, Lyan-Ywan;Peng, Chih-Hua
    • Earthquakes and Structures
    • /
    • v.12 no.4
    • /
    • pp.425-436
    • /
    • 2017
  • Vibration control using a tuned mass damper (TMD) is an effective technique that has been verified using analytical methods and experiments. It has been applied in mechanical, automotive, and structural applications. However, the damping of a TMD cannot be adjusted in real time. An excessive mass damper stroke may be introduced when the mass damper is subjected to a seismic excitation whose frequency content is within its operation range. The semi-active tuned mass damper (SATMD) has been proposed to solve this problem. The parameters of an SATMD can be adjusted in real time based on the measured structural responses and an appropriate control law. In this study, a stiffness-controllable TMD, called a leverage-type stiffness-controllable mass damper (LSCMD), is proposed and fabricated to verify its feasibility. The LSCMD contains a simple leverage mechanism and its stiffness can be altered by adjusting the pivot position. To determine the pivot position of the LSCMD in real time, a discrete-time direct output-feedback active control law that considers delay time is implemented. Moreover, an identification test for the transfer function of the pivot driving and control systems is proposed. The identification results demonstrate the target displacement can be achieved by the pivot displacement in 0-2 Hz range and the control delay time is about 0.1 s. A shaking-table test has been conducted to verify the theory and feasibility of the LSCMD. The comparisons of experimental and theoretical results of the LSCMD system show good consistency. It is shown that dynamic behavior of the LSCMD can be simulated correctly by the theoretical model and that the stiffness can be properly adjusted by the pivot position. Comparisons of experimental results of the LSCMD and passive TMD show the LSCMD with less demand on the mass damper stroke than that for the passive TMD.

Modeling of the friction in the tool-workpiece system in diamond burnishing process

  • Maximov, J.T.;Anchev, A.P.;Duncheva, G.V.
    • Coupled systems mechanics
    • /
    • v.4 no.4
    • /
    • pp.279-295
    • /
    • 2015
  • The article presents a theoretical-experimental approach developed for modeling the coefficient of sliding friction in the dynamic system tool-workpiece in slide diamond burnishing of low-alloy unhardened steels. The experimental setup, implemented on conventional lathe, includes a specially designed device, with a straight cantilever beam as body. The beam is simultaneously loaded by bending (from transverse slide friction force) and compression (from longitudinal burnishing force), which is a reason for geometrical nonlinearity. A method, based on the idea of separation of the variables (time and metric) before establishing the differential equation of motion, has been applied for dynamic modeling of the beam elastic curve. Between the longitudinal (burnishing force) and transverse (slide friction force) forces exists a correlation defined by Coulomb's law of sliding friction. On this basis, an analytical relationship between the beam deflection and the sought friction coefficient has been obtained. In order to measure the deflection of the beam, strain gauges connected in a "full bridge" type of circuit are used. A flexible adhesive is selected, which provides an opportunity for dynamic measurements through the constructed measuring system. The signal is proportional to the beam deflection and is fed to the analog input of USB DAQ board, from where the signal enters in a purposely created virtual instrument which is developed by means of Labview. The basic characteristic of the virtual instrument is the ability to record and visualize in a real time the measured deflection. The signal sampling frequency is chosen in accordance with Nyquist-Shannon sampling theorem. In order to obtain a regression model of the friction coefficient with the participation of the diamond burnishing process parameters, an experimental design with 55 experimental points is synthesized. A regression analysis and analysis of variance have been carried out. The influence of the factors on the friction coefficient is established using sections of the hyper-surface of the friction coefficient model with the hyper-planes.

Influence of multi-component ground motions on seismic responses of long-span transmission tower-line system: An experimental study

  • Tian, Li;Ma, Ruisheng;Qiu, Canxing;Xin, Aiqiang;Pan, Haiyang;Guo, Wei
    • Earthquakes and Structures
    • /
    • v.15 no.6
    • /
    • pp.583-593
    • /
    • 2018
  • Seismic performance is particularly important for life-line structures, especially for long-span transmission tower line system subjected to multi-component ground motions. However, the influence of multi-component seismic loads and the coupling effect between supporting towers and transmission lines are not taken into consideration in the current seismic design specifications. In this research, shake table tests are conducted to investigate the performance of long-span transmission tower-line system under multi-component seismic excitations. For reproducing the genuine structural responses, the reduced-scale experimental model of the prototype is designed and constructed based on the Buckingham's theorem. And three commonly used seismic records are selected as the input ground motions according to the site soil condition of supporting towers. In order to compare the experimental results, the dynamic responses of transmission tower-line system subjected to single-component and two-component ground motions are also studied using shake table tests. Furthermore, an empirical model is proposed to evaluate the acceleration and member stress responses of transmission tower-line system subjected to multi-component ground motions. The results demonstrate that the ground motions with multi-components can amplify the dynamic response of transmission tower-line system, and transmission lines have a significant influence on the structural response and should not be neglected in seismic analysis. The experimental results can provide a reference for the seismic design and analysis of long-span transmission tower-line system subjected to multi-component ground motions.

A Lightweight Hardware Accelerator for Public-Key Cryptography (공개키 암호 구현을 위한 경량 하드웨어 가속기)

  • Sung, Byung-Yoon;Shin, Kyung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.12
    • /
    • pp.1609-1617
    • /
    • 2019
  • Described in this paper is a design of hardware accelerator for implementing public-key cryptographic protocols (PKCPs) based on Elliptic Curve Cryptography (ECC) and RSA. It supports five elliptic curves (ECs) over GF(p) and three key lengths of RSA that are defined by NIST standard. It was designed to support four point operations over ECs and six modular arithmetic operations, making it suitable for hardware implementation of ECC- and RSA-based PKCPs. In order to achieve small-area implementation, a finite field arithmetic circuit was designed with 32-bit data-path, and it adopted word-based Montgomery multiplication algorithm, the Jacobian coordinate system for EC point operations, and the Fermat's little theorem for modular multiplicative inverse. The hardware operation was verified with FPGA device by implementing EC-DH key exchange protocol and RSA operations. It occupied 20,800 gate equivalents and 28 kbits of RAM at 50 MHz clock frequency with 180-nm CMOS cell library, and 1,503 slices and 2 BRAMs in Virtex-5 FPGA device.

Numerical investigation on the effect of baffles on liquid sloshing in 3D rectangular tanks based on nonlinear boundary element method

  • Guan, Yanmin;Yang, Caihong;Chen, Ping;Zhou, Li
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.399-413
    • /
    • 2020
  • The numerical simulation of liquid sloshing in the three-dimensional tanks under horizontal excitation and roll excitation was carried out, and the inhibition effect of different baffles on the sloshing phenomenon was investigated. The numerical calculations were carried out by the nonlinear Boundary Element Method (BEM) with Green's theorem based on the potential flow, which was conducted with the governing equation corresponding to the boundaries of each region. The validity of the method was verified by comparing with experimental values and published literatures. The horizontal baffle, the vertical baffle and the T-shaped baffle in the sloshing tanks were investigated respectively, and the baffles' position, dimension and the liquid depth were provided and discussed in detail. It is drawn that the baffle shape plays a non-negligible role in the tank sloshing. The vertical baffle is a more effective way to reduce the sloshing amplitude when the tank is under a horizontal harmonic excitation while the horizontal baffle is a more effective way when the tank is under a roll excitation. The amplitude of free surface elevation at right tank wall decreases with the increasing of the horizontal baffle length and the vertical baffle height. Although the T-shaped baffle has the best suppression effect on tank sloshing under horizontal excitation, it has limited suppression effect under roll excitation and will complicate the sloshing phenomenon when changing baffle height.

Duplex Control for Consensus of Multi-agent Systems with Input Saturations (입력포화가 존재하는 다중 에이전트 시스템의 일치를 위한 이종제어)

  • Lim, Young-Hun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.4
    • /
    • pp.284-291
    • /
    • 2021
  • In this paper, we study the consensus problem for multi-agent systems with input saturations. The goal of consensus is to achieve a swarming behavior of multi-agent systems by reaching the agreement through information exchange. This paper considers agents modeled by first-order dynamics with input saturations. In order to guarantee the global convergence of the agents, it is assumed that the agents are stable. Moreover, considering the disturbances, we propose the PI based duplex control method to achieve the consensus. The proposed P controller and I controller are composed of different information network. Then, we investigate the conditions of the information networks and the control gains of P, I controllers to achieve the consensus applying the Lyapunov stability theorem and the Lasalle's Invariance Principle. Finally, we conduct the simulations to validate the theoretical results.

Using Tabu Search for L(2,1)-coloring Problem of Graphs with Diameter 2 (Tabu Search를 이용한 지름이 2인 그래프에 대한 L(2,1)-coloring 문제 해결)

  • Kim, SoJeong;Kim, ChanSoo;Han, KeunHee
    • Journal of Digital Convergence
    • /
    • v.20 no.2
    • /
    • pp.345-351
    • /
    • 2022
  • For simple undirected graph G=(V,E), L(2,1)-coloring of G is a nonnegative real-valued function f : V → [0,1,…,k] such that whenever vertices x and y are adjacent in G then |f(x)-f(y)|≥ 2 and whenever the distance between x and y is 2, |f(x)-f(y)|≥ 1. For a given L(2,1)-coloring c of graph G, the c-span is λ(c) = max{|c(v)-c(v)||u,v∈V}. L(2,1)-coloring number λ(G) = min{λ(c)} where the minimum is taken over all L(2,1)-coloring c of graph G. In this paper, based on Harary's Theorem, we use Tabu Search to figure out the existence of Hamiltonian Path in a complementary graph and confirmed that if λ(G) is equal to n(=|V|).

Unsupervised one-class classification for condition assessment of bridge cables using Bayesian factor analysis

  • Wang, Xiaoyou;Li, Lingfang;Tian, Wei;Du, Yao;Hou, Rongrong;Xia, Yong
    • Smart Structures and Systems
    • /
    • v.29 no.1
    • /
    • pp.41-51
    • /
    • 2022
  • Cables are critical components of cable-stayed bridges. A structural health monitoring system provides real-time cable tension recording for cable health monitoring. However, the measurement data involve multiple sources of variability, i.e., varying environmental and operational factors, which increase the complexity of cable condition monitoring. In this study, a one-class classification method is developed for cable condition assessment using Bayesian factor analysis (FA). The single-peaked vehicle-induced cable tension is assumed to be relevant to vehicle positions and weights. The Bayesian FA is adopted to establish the correlation model between cable tensions and vehicles. Vehicle weights are assumed to be latent variables and the influences of different transverse positions are quantified by coefficient parameters. The Bayesian theorem is employed to estimate the parameters and variables automatically, and the damage index is defined on the basis of the well-trained model. The proposed method is applied to one cable-stayed bridge for cable damage detection. Significant deviations of the damage indices of Cable SJS11 were observed, indicating a damaged condition in 2011. This study develops a novel method to evaluate the health condition of individual cable using the FA in the Bayesian framework. Only vehicle-induced cable tensions are used and there is no need to monitor the vehicles. The entire process, including the data pre-processing, model training and damage index calculation of one cable, takes only 35 s, which is highly efficient.