• Title/Summary/Keyword: s equations

Search Result 5,061, Processing Time 0.031 seconds

A Linear Wave Equation Over Mild-Sloped Bed from Double Integration (이중적분을 이용한 완경사면에서의 선형파 방정식)

  • Kim, Hyo-Seob;Jung, Byung-Soon;Lee, Ye-Won
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.12 no.3
    • /
    • pp.165-172
    • /
    • 2009
  • A set of equations for description of transformation of harmonic waves is proposed here. Velocity potential function and separation of variables are introduced for the derivation. The continuity equation is in a vertical plane is integrated through the water so that a horizontal one-dimensional wave equation is produced. The new equation composed of the complex velocity potential function, further be modified into. A set up of equations composed of the wave amplitude and wave phase gradient. The horizontally one-dimensional equations on the wave amplitude and wave phase gradient are the first and second-order ordinary differential equations. They are solved in a one-way marching manner starting from a side where boundary values are supplied, i.e. the wave amplitude, the wave amplitude gradient, and the wave phase gradient. Simple spatially-centered finite difference schemes are adopted for the present set of equations. The equations set is applied to three test cases, Booij's inclined plane slope profile, Massel's smooth bed profile, and Bragg's wavy bed profile. The present equations set is satisfactorily verified against existing theories including Massel's modified mild-slope equation, Berkhoff's mild-slope equation, and the full linear equation.

  • PDF

THREE POINT BOUNDARY VALUE PROBLEMS FOR THIRD ORDER FUZZY DIFFERENTIAL EQUATIONS

  • Murty, M.S.N.;Kumar, G. Suresh
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.19 no.1
    • /
    • pp.101-110
    • /
    • 2006
  • In this paper, we develop existence and uniqueness criteria to certain class of three point boundary value problems associated with third order nonlinear fuzzy differential equations, with the help of Green's functions and contraction mapping principle.

  • PDF

EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A SINGULAR SYSTEM OF NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS WITH INTEGRAL BOUNDARY CONDITIONS

  • Wang, Lin;Lu, Xinyi
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.5_6
    • /
    • pp.877-894
    • /
    • 2013
  • In this paper, we study the existence and uniqueness of solutions for a singular system of nonlinear fractional differential equations with integral boundary conditions. We obtain existence and uniqueness results of solutions by using the properties of the Green's function, a nonlinear alternative of Leray-Schauder type, Guo-Krasnoselskii's fixed point theorem in a cone. Some examples are included to show the applicability of our results.

GENERALIZED JENSEN'S EQUATIONS IN A HILBERT MODULE

  • An, Jong Su;Lee, Jung Rye;Park, Choonkil
    • Korean Journal of Mathematics
    • /
    • v.15 no.2
    • /
    • pp.135-148
    • /
    • 2007
  • We prove the stability of generalized Jensen's equations in a Hilbert module over a unital $C^*$-algebra. This is applied to show the stability of a projection, a unitary operator, a self-adjoint operator, a normal operator, and an invertible operator in a Hilbert module over a unital $C^*$-algebra.

  • PDF

FEYNMAN′S OPERATIONAL CALCULI FOR TIME DEPENDENT NONCOMMUTING OPERATORS

  • Brian Jefferies
    • Journal of the Korean Mathematical Society
    • /
    • v.38 no.2
    • /
    • pp.193-226
    • /
    • 2001
  • We study Feynman's Operational Calculus for operator-valued functions of time and for measures which are not necessarily probability measures; we also permit the presence of certain unbounded operators. further, we relate the disentangling map defined within the solutions of evolution equations and, finally, remark on the application of stability results to the present paper.

  • PDF

THE EXACT SOLUTION OF KLEIN-GORDON'S EQUATION BY FORMAL LINEARIZATION METHOD

  • Taghizadeh, N.;Mirzazadeh, M.
    • Honam Mathematical Journal
    • /
    • v.30 no.4
    • /
    • pp.631-635
    • /
    • 2008
  • In this paper we discuss on the formal linearization and exact solution of Klein-Gordon's equation (1) $u_{tt}-au_{xx}+bu-cu^3=0 a,b,c{\in}R^+$ So that we know an efficient method for constructing of particular solutions of some nonlinear partial differential equations is introduced.

STABILITY IN NONLINEAR NEUTRAL LEVIN-NOHEL INTEGRO-DIFFERENTIAL EQUATIONS

  • Khelil, Kamel Ali;Ardjouni, Abdelouaheb;Djoudi, Ahcene
    • Korean Journal of Mathematics
    • /
    • v.25 no.3
    • /
    • pp.303-321
    • /
    • 2017
  • In this paper we use the Krasnoselskii-Burton's fixed point theorem to obtain asymptotic stability and stability results about the zero solution for the following nonlinear neutral Levin-Nohel integro-differential equation $$x^{\prime}(t)+{\displaystyle\smashmargin{2}{\int\nolimits_{t-{\tau}(t)}}^t}a(t,s)g(x(s))ds+c(t)x^{\prime}(t-{\tau}(t))=0$$. The results obtained here extend the work of Mesmouli, Ardjouni and Djoudi [20].

ON THE SOLUTION OF NONLINEAR EQUATIONS CONTAINING A NON-DIFFERENTIABLE TERM

  • Argyros, Ioannis K.
    • East Asian mathematical journal
    • /
    • v.24 no.3
    • /
    • pp.295-304
    • /
    • 2008
  • We approximate a locally unique solution of a nonlinear operator equation containing a non-differentiable operator in a Banach space setting using Newton's method. Sufficient conditions for the semilocal convergence of Newton's method in this case have been given by several authors using mainly increasing sequences [1]-[6]. Here, we use center as well as Lipschitz conditions and decreasing majorizing sequences to obtain new sufficient convergence conditions weaker than before in many interesting cases. Numerical examples where our results apply to solve equations but earlier ones cannot [2], [5], [6] are also provided in this study.

  • PDF

NUMERICAL SOLUTION OF A GENERAL CAUCHY PROBLEM

  • El-Namoury, A.R.M.
    • Kyungpook Mathematical Journal
    • /
    • v.28 no.2
    • /
    • pp.177-183
    • /
    • 1988
  • In this work, two numerical schemes arc proposed for solving a general form of Cauchy problem. Here, the problem, to be defined, consists of a system of Volterra integro-differential equations. Picard's and Seiddl'a methods of successive approximations are ued to obtain the approximate solution. The convergence of these approximations is established and the rate of convergence is estimated in every case.

  • PDF