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요 약

연직 2차원 평면을 대상으로 하는 연속방정식을 수심방향으로 이중적분 하여 수평1차원 파랑방정식을 구하였다. 새

방정식은 복소수 포텐셜 함수로 구성되어 있으며, 파랑의 진폭과 위상경사함수를 도입하여 한 세트의 실수방정식으

로도 변형되었다. 파랑진폭과 위상경사함수를 포함한 한 세트의 식은 각각 1차, 2차 상미분방정식이며, 한쪽 경계에

서 경계조건을 적절히 지정하여 전 영역에서의 해를 한 방향으로 진행하면서 구할 수 있다. 이때 경계조건으로는 파

랑진폭 값, 파랑진폭의 경사, 위상 경사 값이다. 단순한 중앙차분식을 이용하여 식을 차분화 하였다. 새 방정식을

Booij의 경사판, Massel의 부드러운 저면, Bragg의 싸인 함수의 저면에 대하여 적용하여 보았다. 본 방정식은 Massel의

수정완경사방정식, Berkhoff 의 완경사방정식, 완전 선형방정식과 비교하여 유사한 결과를 나타내었으며, 유용함을 보였다.

Abstract − A set of equations for description of transformation of harmonic waves is proposed here. Velocity

potential function and separation of variables are introduced for the derivation. The continuity equation is in a

vertical plane is integrated through the water so that a horizontal one-dimensional wave equation is produced.

The new equation composed of the complex velocity potential function, further be modified into. A set up of equations

composed of the wave amplitude and wave phase gradient. The horizontally one-dimensional equations on the

wave amplitude and wave phase gradient are the first and second-order ordinary differential equations. They

are solved in a one-way marching manner starting from a side where boundary values are supplied, i.e. the wave

amplitude, the wave amplitude gradient, and the wave phase gradient. Simple spatially-centered finite difference

schemes are adopted for the present set of equations. The equations set is applied to three test cases, Booij’s

inclined plane slope profile, Massel’s smooth bed profile, and Bragg’s wavy bed profile. The present equations set

is satisfactorily verified against existing theories including Massel’s modified mild-slope equation, Berkhoff’s mild-

slope equation, and the full linear equation.

Keywords: Double integral(이중적분), Leibniz rule(Leibniz 법칙), Mild-sloped bed(완경사면), Wave amplitude

(파랑진폭), Wave phase gradient(파랑위상의 경사)

1. INTRODUCTION

 

The mild-slope equation has been widely used for the

description of wave transformation over mild-sloped sea

beds since it was proposed by Berkhoff [1973]. A sea bed

is often called mild-sloped when the bed slope is much

smaller than 1, or smaller than 1/3. The mild-slope equation

was developed from either the continuity equation or the

principle of stationary action by including the variational

principle. It has been known that the accuracy of the mild-

slope equation is guaranteed up to a certain bed slope. 

Berkhoff [1973] derived the mild-slope equation starting†Corresponding author: hkim@kookmin.ac.kr
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from the continuity equation. Water was assumed to be incom-

pressible and the flow inside free surface waves was assumed

to be irrotational, which allowed using velocity potential

function, Φ. The continuity of mass flow in the x z domain

is expressed by the following Laplace equation:

 

(1)

where x is the horizontal coordinate, and z is the upward

vertical coordinate over the still sea level. The continuity of

mass flow should be satisfied at every point in the compu-

tational domain at every instant. Likewise, the continuity equa-

tion should be satisfied at every section in the computational

domain at every instant. The integration of the continuity

equation multiplied by an arbitrary weight function at any

selected section should also be satisfied at every instant.

Berkhoff chose a hyperbolic cosine function as the weight

function in the vertical direction to take into account verti-

cal distribution of wave energy flux, and took the vertical

integration process of the following equation which is the

multiplication of the continuity equation and the vertical

weight function, Z of Equation (3):

(2)

and 

(3)

Berkhoff additionally made use of Green’s theorem related

to the bed boundary condition, obtained the final form of the

mild-slope equation. The mild-slope equation has also been

proposed in different types of partial differential equation

by Rather [1979] and Copeland [1985].

More recently the modified mild-slope equation was pro-

posed by Massel [1993], and Chamberlain and Porter [1995].

Two time-dependent forms of the modified mild-slope equation

were presented by Suh et al. [1997] by using Green’s theorem,

and the variational principle in the manner that Luke [1967]

confirmed the Eulerian equations of motion for the classical

water wave problem. Suh et al.’s equations are transformed

into Massel’s modified mild-slope equation when the time-

dependent term is replaced by a time-invariant term. Suh et

al. suggested that the modified mild-slope equation could

also be used for random waves if the carrier frequency is

introduced. The modified mild-slope equation is reduced to

the mild-slope equation when some higher-order terms of

the modified mild-slope equation are turned off.

The modified mild-slope equation is known to have the

applicability for a wider range of bed slopes than the mild-

slope equation. Furthermore the modified mild-slope equa-

tion has produced more accurate reflection coefficients for

Bragg’s sinusoidal bed tests than the mild-slope equation

due to the additional higher-order terms. 

The final form of the governing equation is dependent on

the weight function to be multiplied to the continuity equa-

tion. The weight function may represent the importance of

the fluid divergence property in a water column. Here we

adopt a constant weight function instead of at hyperbolic

cosine function which was adopted in the mild slope equa-

tion, and derive a new from of governing equation in the

following sections. The new equations are applied to three

topographies for comparison with other theories in the last

section.

 

2. THE NEW WAVE EQUATION

At free surface boundary nonlinear terms of the momen-

tum equation are ignored, and the following condition in a

linear form is applied:

 

(4)

where t is time, and g is the acceleration due to gravity,

while at the bed the following zero fluid flux condition is

applied:

 

(5)

 

where h is the water depth relative to the still water level.

Now, we integrate the equation of mass continuity with respect

to z from -h to 0.

 

(6)

 

Equation (6) is often used to calculate vertical velocities

at an arbitrary level when the horizontal velocity field is

known. Equation (6) can be thought as the integral of the

continuity equation without additional weight function over

the water column. It should be noted that the expression

with the integration at a section is less strict than the expres-

sion with the partial differential equation which is valid at

every point in the domain. The above integral with two
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integrands is split into two integrals for convenient descrip-

tion. Expanding the Leibniz rule for a second order differ-

ential equation, we obtain for the first term of the above

equation: 

 

(7)

 

=

= (8)

 

Harmonic waves are of interest in this paper, and variables

can be separated as:

 
(9)

 
where Z is given by Equation (3), the complex function φ is

dependent on x, and the complex phase function Ω is

dependent on time only as:

 
(10)

where i = , and ω is the wave angular velocity.

Then,

(11)

where λ is the deep water wave number, ω2/g. The free sur-

face boundary condition, Equation (4), is transformed into the

dispersion relationship:

(12)

 
Inserting Equations (9) and (10), into Equation (8), we

obtain:

 

(13)

where

 

(14)

 

and

 
(15)

Equation (13) can be extended to a three-dimensional

form by including the other horizontal coordinate, y, which

reads:

 

(16)

where  is the gradient vector on the x y plane.

Up to the present the bed boundary condition has not yet

been reflected in the governing equation in any way. When

Equation (9) including the hyperbolic cosine function of Equa-

tion (3) is applied to the bed boundary, the left side of the

bed boundary condition, Equation (5), becomes zero, which

leads to simple zero horizontal and vertical velocities at the

bed. The right side of the bed boundary condition, Equation

(5), reads:

(17)

 

Then, the second derivative of the potential function becomes:

 

=

= (18)

Replacing the second and first derivatives of the govern-

ing equation, Equation (13), by the potential function using

Equations (17) and (18), we obtain:

(19)

where F is a function of x, k and h. Since Equation (18)

should always be satisfied, F=0. This new relationship

between x, k and h comes into conflict with the dispersion

relationship between k and h derived from the free surface

boundary condition. Therefore, we convey this mismatch of

the mass conservation at the bed to evanescent modes

instead of applying of this bed boundary condition to the hori-

zontally propagating mode, although the evanescent modes are

not of main interest of this paper. We also see that the mild-

slope equation and the modified mild-slope equation and com-

plementary mild-slope equation (Kim and Bai’s [2004]),
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require evanescent modes for full agreement at the bed, see

Massel [1993]. Trials have been attempted to incorporate

the evanescent modes in dealing with the wave propagation

problems over sloped beds by some researchers.

Now we arrange the developed equation in a simple form

to compare with existing equations. We can compare the new

equation with the previous mild-slope equation of Berkhoff

and the modified mild-slope equation proposed by Massel

or Chamberlain and Porter. The one-dimensional versions of

the new equation, mild slope equation and the previous mod-

ified mild-slope equation are arranged in the following form:

 

(20)

We non-dimensionalize the coefficient function A of the

modified mild-slope equation by multiplying the water depth

as:

 

Ah = (21)

 

and that of the developed equation: 

 

(22)

see Fig. 1

The non-dimensional variable group, Ah, of the present

equation decreases as the independent variable group, kh,

increases up to about 2. After that the Ah increases slowly

as kh increases. This trend of variable group Ah of the

present equation is similar to the trend of Ah of the mod-

ified mild-slope equation. However the starting value of

Ah of the present equation is 0 instead of 1 for the mod-

ified mild-slope equation.

The non-dimensional variable group, Bh, of Equation (13)

monotonously increases as kh increases, while Bh of the

modified mild-slope equation decreases as kh increases up

to about 2, and then increases slowly as kh increases after

that. The starting value of Bh of the present equation is

-1.5, which is smaller than the value 0 of the modified

mild-slope equation.

The non-dimensional variable group, Ch2, of the present

equation increases as kh increases up to about 3, and then

decreases after that. The variable group Ch2 of the modified

mild-slope equation has similar trend to the present equa-

tion, but the variation of Ch2 of the present equation is much

larger than that of the modified mild-slope equation.

We express the developed equation in a simpler form for

compact expression as:

 

(23)

 

Here we introduce the wave amplitude, a, the wave phase,

S, and its spatial gradient, b, as:

(24)

The wave amplitude, the wave phase, and its gradient are

dependent on x for one-dimensional problems. Then, Equa-

tion (23) is split into the following two equations composed

of real variables only as:

 

(25)

and

 

(26)

 

 Either Equation (23) of a complex variable or a set of

Equations (25) and (26) of real variable can be solved for

wave transformation over mild-sloped beds. 

 

3. NUMERICAL SOLUTION

 

We adopt explicit finite difference schemes to solve Equa-

tions (25) and (26). First, Equation (25) is discretized as
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Fig. 1. Coefficient functions of present and modified mild-slope

equations.
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 (27)

 

and Equation (29) is discretized as

 

(28)

 

Boundary conditions should be provided to slove the

equation. Assume that answers are given at the on-shore

boundary where only transmitted waves exist. Therefore, a,

da/dx and b at the right end of the computational domain

are provided, in other words discrete variables aM, aM-1, bM

are provided to the finite difference equations. The two finite

difference equations are alternately solved: Equation (27) is

transformed into Equation (21) for ai-1, and Equation (28) is

transformed into Equation (30) for bi-1. Both difference equa-

tions are centred in space, see Fig. 2:

(29)

 

and

(30)

 

where

 

(31)

Equations (29) and (30) are solved in the negative x

direction.

4. VERIFICATION OF NEW EQUATION

 

The new set of equations is applied to a series of bed

profiles used by Booij [1983]. The bathymetry is composed

of an inclined plane with a variable slope, which connects

the two flat beds at off-shore and near-shore sides. The hor-

izontal width of the plane is called B. When the slope

becomes infinite, the shape becomes a step, see Fig. 3. The

offshore water depth is 0.6 m, the near-shore water depth

is 0.2 m, and the wave period of the incident waves is 2 sec.

The boundary values at the right end of the computation

domain were provided considering the fact that only outgo-

ing waves exist at the near-shore end. The wave amplitude,

a, at the near-shore boundary was given 0.1 m, and the value

of the phase function derivative, b, was given the wave num-

ber at the shallow zone. The two dependent variables, a and

b, were alternately computed from Equations (29) and (30)

from the near-shore to the off-shore end.

Computed spatial distribution of the relative wave ampli-

tude to the outgoing wave amplitude, a0, for a specific plane

inclination, width, i.e. B=2 m, 0 ≤ x ≤ 2 m is shown in Fig. 4.

The wave amplitude shows undulation at off-shore side from

the inclined plane because of the superposition of the inci-

dent and reflected waves.

The computed spatial distribution of the wave phase gra-

dient function for a specific plane inclination width of 2 m,

0 ≤ x ≤ 2 m is shown in Fig. 5. The wave phase gradient

function also has undulation at off-shore side from the inclined

ai 1– 2ai– ai 1++

Δx2
------------------------------------- Di

ai 1+ ai 1––

Δx
------------------------ Ei bi

2
–( )ai+ + 0=

bi bi 1––

Δx
-------------------

4 ai ai 1––( )
Δx ai ai 1–+( )
------------------------------ Di 0.5–+

⎩ ⎭
⎨ ⎬
⎧ ⎫bi bi 1–+

2
-------------------+ 0=

ai 1–

1

2 DiΔx–
-------------------- 4 2 Ei bi

2
–( )Δx2–{ }ai 2 DiΔx+( )ai 1+–[ ]=

bi 1–

2 Gi 0.5–+

2 Gi 0.5––
----------------------bi=

Gi 0.5–

4 ai ai 1––( )
Δx ai ai 1–+( )
------------------------------ Di 0.5–+=

Fig. 2. Variable numbering system in finite difference equations set.
Fig. 3. Booij’s test step with inclined plane.

Fig. 4. Computed spatial distribution of relative amplitude for

Booij’s bed profile of B=2 m.
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plane because of the superposition of incident and reflected

waves in the region.

The reflection coefficient, Kr, can be obtained from the

computed maximum and minimum wave amplitudes, amax

and amin, at the off-shore flat bed zone, that is:

(32)

The computed reflection coefficients from the present equa-

tion for Booij’s test profiles are shown in Fig. 3. In general

the reflection coefficients of the present equation are close

to those of the modified mild-slope equation. The reflection

coefficients of the present equation are slightly smaller than

those of the modified mild-slope equation for inclined plane

of slope between 0.4 and 4. It is inferred that the differ-

ences come from the different weight functions involved in

the integration.

The computed results of the present set of equations were

also compared with the solutions of the full linear equation

which does not involve separation of variables in Fig. 3

(Park et al. [1991]). The computed reflection coefficients

from the developed equation are closer to the full linear

equation solutions than those from the modified mild-slope

equation in a range of B smaller than 0.4 m. The reflection

coefficients from the present equation, the modified mild-

slope equation, and the full linear equation are very close

for B larger than or equal to 1 m, because the higher order

terms become negligible when the bed slope is small.

For the plane slopes of greater than or equal to 1, which

correspond to B≤0.4 m, the computed reflection coefficients

from the developed set of equations and the modified mild-

slope equation show quite large gaps compared to those

from the full linear equation. It has been known that the

slope of 1 is the limit slope to the applicability of the mild-

slope equations group (Porter and Staziker, [1995]).

The reflection coefficients from the mild-slope equation

are quite smaller than those from the developed equations

and the modified mild-slope equation in a wide range of bed

slopes, especially for steep slopes. The difference may come

from the existence of the higher-order terms of the devel-

oped equations, or the modified mild-slope equation.

Suh et al. [1997] examined the role of the two higher-

order terms, the second derivative of the bed slope and the

square of the first derivative of the bed slope, in the mod-

ified mild-slope equation on the reflection coefficient for

Booij’s bathymetry, and suggested that the discontinuity of

bed slope may cause inaccurate reflection coefficient for

steep slopes. Tests on bathymetry with no slope discontinu-

ity will be useful to look in the cause of the inaccuracy for

steep bed slopes.

The developed equation was applied to a set of different

bed geometries to examine the effect of the discontinuity of

the bed slope on the reflection coefficient. We use Massel’s

[1993] bathymetry profile to test the present equation, which

is described by:

 

(33)

Kr
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h
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Fig. 6. Comparison of computed reflection coefficients for Booij’s

bed profile. Fig. 7. Massel’s smooth bathymetry with hyperbolic tangent funtion.

Fig. 5. Computed spatial distribution of phase gradient for Booij’s

bed profile of B=2 m.
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where h is the water depth of the profile, h1 is the off-shore

constant water depth, h2 is the near-shore constant water

depth, and B1 is the width of region with non-plane bottom

profile. The same off-shore and near-shore water depths as

Booij’s bed profiles are chosen to separate out the effect of

the discontinuity of the bed slope so that we can compare

the test results of the present equation for smooth profiles

with the test results for Booij’s test profiles, i.e. h1=0.6 m,

and h2=0.2 m. For comparison in a figure, Massel’s smooth

step results are represented by the steepest slope in the

whole profile, 1.5π(h1-h2)/B1, and its corresponding conceptual

bottom width, B=B1/1.5π. The computed reflection coefficients

(Kr) for Massel’s profiles are shown in Fig. 8 with those for

Booij’s bed profiles. The computation results show that the

reflection coefficient decreases monotonously as the slope

becomes milder in contrast to the wave-length-related peri-

odic pulses of the reflection coefficient for Booij’s test steps.

The reflection coefficient for a uniform slope of Booij’s

step is larger than that for the same representative maxi-

mum slope of Massel’s smooth step. However, the reflec-

tion coefficients for the angled and smooth profiles are not

much different for steep slopes even though the slopes are

represented by the maximum slopes for the smooth profiles.

The test results of the present equation show that the reflec-

tion coefficient increases as the bed slope increases for

smooth profiles as well as inclined plane profiles. This indi-

cates that there is a limiting bottom slope on the applicabil-

ity of the present equation like the modified mild-slope

equation maybe because of the adoption of the separation

of variables in the velocity potential function.

The present equation is then applied to Bragg’s bathym-

etry to examine the accuracy of the developed equation. It

has been known that sinusoidal bathymetry can cause high

reflection depending on the ratio between the bed form length

and the wave length. The bathymetry is expressed by the

following equation:

,              x < 0

,              4l > x (34)

where h is the water depth in m, h1 and h2 are the off-shore

and near-shore water depths from the bed forms, respec-

tively, and l is the ripple length. Incident waves propagate

in the positive x direction. Calling the wave length L, the

computed reflection coefficient for 2l/L=0.98 from the

present equation is 0.745, which closely agrees with 0.752

from the modified mild-slope equation, while the reflection

coefficient of 0.678 from the mild-slope equation is quite

smaller than the other results.

An interesting feature is the distribution of the reflection

coefficient around the second resonance point, i.e. 2l/L=2.

The compared equations produce different distribution of

h1 0.156=

h h1 0.05sin 2πx l⁄( )–= 0 x 4l≤ ≤

h2 0.156=

Fig. 8. Comparison of computed reflection coefficients for Massel’s

smooth bed profiles.

Fig. 9. Bragg’s sinusoidal bathymetry with 4 ripples.

Fig. 10. Comparison of computed reflection coefficients for Bragg’s

bed profile.
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the reflection coefficients around the point. The present set

of equations produces a mode, other equations produce more

or less high secondary reflection coefficient around 2l/L=2,

see Fig. 10. Further study is needed for the explanation of

the reason for the differences.

 

5. CONCLUSIONS

 

An equation on a complex velocity potential function form

for description of the transformation of harmonic waves has

been proposed in the present paper. The continuity equation

was multiplied by a vertically constant weight function instead

of the hyperbolic cosine function which was used to derive

the previous mild-slope equation, and the vertical integration

process was carried out to the equation. The developed

governing equation on the complex velocity potential func-

tion was also expressed in a set of two equations composed

of the wave amplitude and phase gradient function.

The present set of equations was applied to the three bed

profiles, Booij’s inclined bed profile, Massel’s smooth bed

profile, and Bragg’s wavy ripple bed profile. The equations

set was verified against other theories.

The test of the present equations set on Booij’s steps reveals

that the present equation provides accurate reflection coef-

ficient compared to the solutions from the full linear equa-

tion. The present equation behaves similarly to the modified

mild-slope equation, but shows slightly more accurate reflec-

tion coefficient than the modified mild-slope equation for

relatively steep bottom slopes. The test of the present equa-

tions set on Massel’s smooth steps exhibits that the reflec-

tion coefficient increases as the bed slope increases even

though the bed slope changes continuously throughout the

bed profile. The test of the present equations set on Bragg’s

sinusoidal ripples confirms that the present equations set

produces correct reflection coefficient to the modified mild-

slope equation, over a wide rage of ratio between the ripple

length and the wave length.

The three sets of experiments confirm the accuracy and

applicability of the new equation based on the vertically uni-

form weight function.
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