• Title/Summary/Keyword: runx1

Search Result 119, Processing Time 0.026 seconds

Osteoporotic bone phenotype in Mats1/2 double-mutant mice (Mats1과 Mats2 이중결손 유전자 돌연변이에 의한 골감소증 기전에 대한 연구)

  • Oh, Juhwan;Choi, YunJeong;Ryu, Mi Heon;Bae, Moon-Kyoung;Kim, Hyung Joon
    • The Korean Journal of Oral and Maxillofacial Pathology
    • /
    • v.42 no.6
    • /
    • pp.159-165
    • /
    • 2018
  • The Hippo pathway was originally discovered in Drosophila by genetic screening and it has been shown to be conserved in various organisms including human. Until now, the essential roles of Hippo pathway in regulating cell proliferation, apoptosis, tumorigenesis, and organ size control is extensively studied. Currently, Mats1/2 (Mob1a/1b), one of the important components in Hippo pathway, mutant mice were generated which has abnormal phenotype such as resistance to apoptosis and spontaneous tumorigenesis. Of note, Mats1/2 mutant mice also showed dental malocclusion. Therefore, in this study, we have evaluated the bone phenotype of Mats1/2 mutant mice. Although the mRNA expressions of Mats1 or Mats2 were observed in both osteoclastogenesis and osteoblastogenesis, the increase of Mats1 level was most prominent during osteoblastogenesis. The RANKL-induced osteoclast differentiation from bone marrow-derived macrophages (BMMs) was unaltered upon Mats1/2 mutation; however, the osteoblast differentiation using calvarial pre-osteoblasts was significantly reduced in Mats1/2 mutant mice compare to that of wild type mice. In accordance with in vitro results, Mats1/2 mutant mice showed decreased bone volume as well as increased trabecular separation in ${\mu}CT$ analyses. These results may provide novel prospect of the probable linkage between Hippo pathway and bone homeostasis.

Association of the Single Nucleotide Polymorphisms in RUNX1, DYRK1A, and KCNJ15 with Blood Related Traits in Pigs

  • Lee, Jae-Bong;Yoo, Chae-Kyoung;Park, Hee-Bok;Cho, In-Cheol;Lim, Hyun-Tae
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.12
    • /
    • pp.1675-1681
    • /
    • 2016
  • The aim of this study was to detect positional candidate genes located within the support interval (SI) regions based on the results of red blood cell, mean corpuscular volume (MCV), and mean corpuscular hemoglobin quantitative trait locus (QTL) in Sus scrofa chromosome 13, and to verify the correlation between specific single-nucleotide polymorphisms (SNPs) located in the exonic region of the positional candidate gene and the three genetic traits. The flanking markers of the three QTL SI regions are SW38 and S0215. Within the QTL SI regions, 44 genes were located, and runt-related transcription factor 1, dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1A (DYRK1A), and potassium inwardly-rectifying channel, subfamily J, member 15 KCNJ15-which are reported to be related to the hematological traits and clinical features of Down syndrome-were selected as positional candidate genes. The ten SNPs located in the exonic region of the three genes were detected by next generation sequencing. A total of 1,232 pigs of an $F_2$ resource population between Landrace and Korean native pigs were genotyped. To investigate the effects of the three genes on each genotype, a mixed-effect model which is the considering family structure model was used to evaluate the associations between the SNPs and three genetic traits in the $F_2$ intercross population. Among them, the MCV level was highly significant (nominal $p=9.8{\times}10^{-9}$) in association with the DYRK1A-SNP1 (c.2989 G$F_2$ intercross, our approach has limited power to distinguish one particular positional candidate gene from a QTL region.

Combined Treatment with Low-Level Laser and rhBMP-2 Promotes Differentiation and Mineralization of Osteoblastic Cells under Hypoxic Stress

  • Heo, Jin-Ho;Choi, Jeong-Hun;Kim, In-Ryoung;Park, Bong-Soo;Kim, Yong-Deok
    • Tissue Engineering and Regenerative Medicine
    • /
    • v.15 no.6
    • /
    • pp.793-801
    • /
    • 2018
  • BACKGROUND: The aim of this study was to evaluate the combined effect of low-level laser treatment (LLLT) and recombinant human bone morphological protein-2 (rhBMP-2) applied to hypoxic-cultured MC3T3-E1 osteoblastic cells and to determine possible signaling pathways underlying differentiation and mineralization of osteoblasts under hypoxia. METHODS: MC3T3-E1 cells were cultured under 1% oxygen tension for 72 h. Cell cultures were divided into four groups: normoxia control, low-level laser (LLL) alone, rhBMP-2 combined with LLLT, and rhBMP-2 under hypoxia. Laser irradiation was applied at 0, 24, and 48 h. Cells were treated with rhBMP-2 at 50 ng/mL. Alkaline phosphatase activity was measured at 3, 7, and 14 days to evaluate osteoblastic differentiation. Cell mineralization was determined with Alizarin red S staining at 7 and 14 days. Western blot assays were performed to evaluate whether p38/protein kinase D (PKD) signaling was involved. RESULTS: The results indicate that LLLT and rhBMP-2 synergistically increased alkaline phosphatase (ALP) activity and mineralization. Western blot analyses showed that expression of type I collagen, runt-related transcription factor 2 (RUNX2), and Osterix (Osx), increased and expression of hypoxia-inducible factor 1-alpha ($HIF-1{\alpha}$), decreased more in the LLLT and rhBMP-2 combined group than in the rhBMP-2 or LLL alone groups. Moreover, LLLT and rhBMP-2 stimulated p38 phosphorylation and rhBMP-2 and LLLT increased Prkd1 phosphorylation. CONCLUSION: Combined treatment with rhBMP-2 and LLL induced differentiation and mineralization of hypoxic-cultured MC3T3-E1 osteoblasts by activating p38/PKD signaling in vitro.

CELLULAR ATTACHMENT AND GENE EXPRESSION OF OSTEOBLAST-LIKE CELLS ON ZIRCONIA CERAMIC SURFACES

  • Pae, Ah-Ran;Lee, Hee-Su;Kim, Hyeong-Seob; Baik, Jin;Woo, Yi-Hyung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.3
    • /
    • pp.227-237
    • /
    • 2008
  • STATEMENT OF PROBLEM: Zirconium oxide can be a substitute to titanium as implant materials to solve the esthetic problems of dark color in the gingival portion of implant restorations. PURPOSE: This study was performed to define attachment and growth behavior of osteoblast- like cells cultured on grooved surfaces of zirconium oxide and evaluate the genetic effect of zirconium oxide surfaces using the reverse transcriptase-polymerase chain reaction (RT-PCR). MATERIAL AND METHODS: MC3T3-E1 cells were cultured on (1) commercially pure titanium discs with smooth surface (T group), (2) yttrium-stabilized tetragonal zirconia polycrystal (Y-TZP) with machined surface (ZS group), and (3) Y-TZP with $100{\mu}m$ grooves (ZG group). Cell proliferation activity was evaluated through MTT assay and cell morphology was examined by SEM. The mRNA expression of Runx2, alkaline phosphatase, osteocalcin, TGF-${\beta}1$, IGF-1, G3PDH in E1 cells were evaluated by RT-PCR. RESULTS: From the MTT assay, after 48 hours of adhesion of MC3T3-E1 cells, the mean optical density value of T group and ZG group significantly increased compared to the ZS group. SEM images of osteoblast-like cells showed that significantly more cells were observed to attach to the grooves and appeared to follow the direction of the grooves. After 24 hours of cell adhesion, more spreading and flattening of cells with active filopodia formation occurred. Results of RT-PCR suggest that T group, ZS group, and ZG group showed comparable osteoblast-specific gene expression after 24 hours of cell incubation. CONCLUSION: Surface topography and material of implants can play an important role in expression of osteoblast phenotype markers. Zirconia ceramic showed comparable biological responses of osteoblast-like cells with titanium during a short-time cell culture period. Also, grooves influence cell spreading and guide the cells to be aligned within surface grooves.

GENE EXPRESSION AFTER THE APPLICATION OF THE FLUID-INDUCED SHEAR STRESS ON THE GINGIVAL FIBROBLAST (유체에 의해 유발된 전단력이 치은 섬유아세포 유전자 발현 변화에 미치는 영향에 관한 연구)

  • Jeong, Mi-Hyang;Choi, Je-Yong;Chae, Chang-Hoon;Kim, Seong-Gon;Nahm, Dong-Seok
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.27 no.5
    • /
    • pp.424-430
    • /
    • 2005
  • The oral cavity is humid environment mainly due to the continuous salivary flow. The reaction of oral mucosa to fluid flow is important for homeostasis and pathogenesis. The objective of this study is the screening the change of gene expression after the application of fluid induced shear stress (FISS) on the gingival fibroblast using cDNA microarray assay. The immortalized human gingival fibroblasts were grown and FISS was applied using a cone viscometer at a rotational velocity of 40 rpm, respectively for periods of 2 and 4 hours. The synthesis of cDNA was done from the extracted total RNA and cDNA microarray assay was done subsequently. The genes that showed over 1.6 in the Cy3/Cy5 or the Cy5/Cy3 value were regarded as genes influenced significantly by the FISS application ion (/M/>0.7). The " RUNX-1" was increased its expression in 2 hours group and " RUN and SH3 domain containing 1" was increased its expression in 4 hours group. The "CC020415", "cyclin L1", "interferon regulatory factor1", "early growth response 1", "immediate early response 2", and "immediate early response 3" genes were increased their expression in 2 and 4 hours after FISS application. In conclusion, we could find many genes that were probably related to the FISS application. Interestingly, most of them were placed in similar molecular pathways and these findings improve the reliability of chip data and usefulness in overall screening. From this experiment, we could find many items for further study and it will make improvement in the understanding of intracellular events in response to FISS.

Identification of Novel Functional Variants of SIN3A and SRSF1 among Somatic Variants in Acute Myeloid Leukemia Patients

  • Min, Jae-Woong;Koh, Youngil;Kim, Dae-Yoon;Kim, Hyung-Lae;Han, Jeong A;Jung, Yu-Jin;Yoon, Sung-Soo;Choi, Sun Shim
    • Molecules and Cells
    • /
    • v.41 no.5
    • /
    • pp.465-475
    • /
    • 2018
  • The advent of massively parallel sequencing, also called next-generation sequencing (NGS), has dramatically influenced cancer genomics by accelerating the identification of novel molecular alterations. Using a whole genome sequencing (WGS) approach, we identified somatic coding and noncoding variants that may contribute to leukemogenesis in 11 adult Korean acute myeloid leukemia (AML) patients, with serial tumor samples (primary and relapse) available for 5 of them; somatic variants were identified in 187 AML-related genes, including both novel (SIN3A, C10orf53, PTPRR, and RERGL) and well-known (NPM1, RUNX1, and CEPBA) AML-related genes. Notably, SIN3A expression shows prognostic value in AML. A newly designed method, referred to as "hot-zone" analysis, detected two putative functional noncoding variants that can alter transcription factor binding affinity near PPP1R10 and SRSF1. Moreover, the functional importance of the SRSF1 noncoding variant was further investigated by luciferase assays, which showed that the variant is critical for the regulation of gene expression leading to leukemogenesis. We expect that further functional investigation of these coding and noncoding variants will contribute to a more in-depth understanding of the underlying molecular mechanisms of AML and the development of targeted anti-cancer drugs.

Fat Mass and Obesity-Associated (FTO) Stimulates Osteogenic Differentiation of C3H10T1/2 Cells by Inducing Mild Endoplasmic Reticulum Stress via a Positive Feedback Loop with p-AMPK

  • Son, Hyo-Eun;Min, Hyeon-Young;Kim, Eun-Jung;Jang, Won-Gu
    • Molecules and Cells
    • /
    • v.43 no.1
    • /
    • pp.58-65
    • /
    • 2020
  • Fat mass and obesity-associated (FTO) gene helps to regulate energy homeostasis in mammals by controlling energy expenditure. In addition, FTO functions in the regulation of obesity and adipogenic differentiation; however, a role in osteogenic differentiation is unknown. This study investigated the effects of FTO on osteogenic differentiation of C3H10T1/2 cells and the underlying mechanism. Expression of osteogenic and endoplasmic reticulum (ER) stress markers were characterized by reverse-transcriptase polymerase chain reaction and western blotting. Alkaline phosphatase (ALP) staining was performed to assess ALP activity. BMP2 treatment increased mRNA expression of osteogenic genes and FTO. Overexpression of FTO increased expression of the osteogenic genes distal-less homeobox5 (Dlx5) and runt-related transcription factor 2 (Runx2). Activation of adenosine monophosphate-activated protein kinase (AMPK) increased FTO expression, and there was a positive feedback loop between FTO and p-AMPK. p-AMPK and FTO induced mild ER stress; however, tunicamycin-induced severe ER stress suppressed FTO expression and AMPK activation. In summary, FTO induces osteogenic differentiation of C3H10T1/2 cells upon BMP2 treatment by inducing mild ER stress via a positive feedback loop with p-AMPK. FTO expression and AMPK activation induce mild ER stress. By contrast, severe ER stress inhibits osteogenic differentiation by suppressing FTO expression and AMPK activation.

Effects of Glycyrrhiza inflata Batal Extracts on Adipocyte and Osteoblast Differentiation (감초추출물의 지방세포와 조골세포에 대한 분화효과)

  • Seo, Cho-Rong;Byun, Jong Seon;An, Jae Jin;Lee, JaeHwan;Hong, Joung-Woo;Jang, Sang Ho;Park, Kye Won
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.7
    • /
    • pp.1015-1021
    • /
    • 2013
  • Glycyrrhiza inflata Batal, an important species of licorice, is one of the most widely used medicinal plants for over 4000 years. Glycyrrhiza plant species has been well known for its various therapeutic activities such as anti-inflammatory, anti-allergic, and anti-ulcer. The purpose of this study was to determine the effects of Glycyrrhiza inflata Batal ethanol extracts (GBE) on adipocyte and osteoblast differentiation. Mesenchymal C3H10T1/2 cells were treated with sub-cytotoxic doses of GBE, and its effects on adipocyte differentiation were assessed. We found that GBE dose-dependently increased lipid accumulation and also induced the expression of adipocyte markers, such as $PPAR{\gamma}$ and its target genes, aP2, and adiponectin, in C3H10T1/2 cells. Consistently, similar effects of GBE on lipid accumulation were also observed in preadipocyte 3T3-L1 cells that further supports the pro-adipogenic activities of GBE. We also investigated the effects of GBE on osteoblast differentiation of mesenchymal C3H10T1/2 cells. As a results, we found that GBE increased the activity of alkaline phosphatase in a dose-dependent manner and also promoted the expression of osteoblast markers, such as ALP and RUNX2, during osteoblast differentiation of C3H10T1/2 cells. Similar pro-osteogenic effects of GBE were also observed in preosteoblast MC3T3-E1 cells. Finally, our data show that a major bioactive compound found in Glycyrrhiza inflata Batal, licochalcone A (LA) but not glycyrrhizic acid (GA), can mediate the pro-adipogenic and pro-osteogenic effects of GBE. Taken together, this study provides data to show the possibility of GBE and its bioactive component LA as putative strategies for type 2 diabetes and bone diseases.

Five Most Common Prognostically Important Fusion Oncogenes are Detected in the Majority of Pakistani Pediatric Acute Lymphoblastic Leukemia Patients and are Strongly Associated with Disease Biology and Treatment Outcome

  • Awan, Tashfeen;Iqbal, Zafar;Aleem, Aamer;Sabir, Noreen;Absar, Muhammad;Rasool, Mahmood;Tahir, Ammara H.;Basit, Sulman;Khalid, Ahmad Mukhtar;Sabar, Muhammad Farooq;Asad, Sultan;Ali, Agha Shabbir;Mahmood, Amer;Akram, Muhammad;Saeed, Tariq;Saleem, Arsalan;Mohsin, Danish;Shah, Ijaz Hussain;Khalid, Muhammad;Asif, Muhammad;Haq, Riazul;Iqbal, Mudassar;Akhtar, Tanveer
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.11
    • /
    • pp.5469-5475
    • /
    • 2012
  • Background and Objectives: Acute lymphoblastic leukemia (ALL) is a complex genetic disease involving many fusion oncogenes (FO) having prognostic significance. The frequency of various FO can vary in different ethnic groups, with important implications for prognosis, drug selection and treatment outcome. Method: We studied fusion oncogenes in 101 pediatric ALL patients using interphase FISH and RT-PCR, and their associations with clinical features and treatment outcome. Results: Five most common fusion genes i.e. BCR-ABL t (22; 9), TCF3-PBX1 (t 1; 19), ETV6-RUNX1 (t 12; 21), MLL-AF4 (t 4; 11) and SIL-TAL1 (del 1p32) were found in 89/101 (88.1%) patients. Frequency of BCR-ABL was 44.5% (45/101). BCR-ABL positive patients had a significantly lower survival ($43.7{\pm}4.24$ weeks) and higher white cell count as compared to others, except patients with MLL-AF4. The highest relapse-free survival was documented with ETV6-RUNX1 (14.2 months) followed closely by those cases in which no gene was detected (13.100). RFS with BCR-ABL, MLL-AF4, TCF3-PBX1 and SIL-TAL1 was less than 10 months (8.0, 3.6, 5.5 and 8.1 months, respectively). Conclusions: This is the first study from Pakistan correlating molecular markers with disease biology and treatment outcome in pediatric ALL. It revealed the highest reported frequency of BCR-ABL FO in pediatric ALL, associated with poor overall survival. Our data indicate an immediate need for incorporation of tyrosine kinase inhibitors in the treatment of BCR-ABL+ pediatric ALL in this population and the development of facilities for stem cell transplantation.

The Role of Autonomous Wntless in Odontoblastic Differentiation of Mouse Dental Pulp Cells

  • Choi, Hwajung;Kim, Tak-Heun;Ko, Seung-O;Cho, Eui-Sic
    • Journal of Korean Dental Science
    • /
    • v.9 no.1
    • /
    • pp.9-18
    • /
    • 2016
  • Purpose: Wnt signaling plays an essential role in the dental epithelium and mesenchyme during tooth morphogenesis. Deletion of the Wntless (Wls) gene in odontoblasts appears to reduce canonical Wnt activity, leading to inhibition of odontoblast maturation. However, it remains unclear if autonomous Wnt ligands are necessary for differentiation of dental pulp cells into odontoblast-like cells to induce reparative dentinogenesis, one of well-known feature of pulp repair to form tertiary dentin. Materials and Methods: To analyze the autonomous role of Wls for differentiation of dental pulp cells into odontoblast-like cells, we used primary dental pulp cells from unerupted molars of Wls-floxed allele mouse after infection with adenovirus for Cre recombinase expression to knockout the floxed Wls gene or control GFP expression. The differentiation of dental pulp cells into odontoblast-like cells was analyzed by quantitative real-time polymerase chain reaction. Result: Proliferation rate was significantly decreased in dental pulp cells with Cre expression for Wls knockout. The expression levels of Osterix (Osx), runt-related transcription factor 2 (Runx2), and nuclear factor I-C (Nfic) were all significantly decreased by 0.3-fold, 0.2-fold, and 0.3-fold respectively in dental pulp cells with Wls knockout. In addition, the expression levels of Bsp, Col1a1, Opn, and Alpl were significantly decreased by 0.7-fold, 0.3-fold, 0.8-fold, and 0.6-fold respectively in dental pulp cells with Wls knockout. Conclusion: Wnt ligands produced autonomously are necessary for proper proliferation and odontoblastic differentiation of mouse dental pulp cells toward further tertiary dentinogenesis.