• Title/Summary/Keyword: runoff coefficient

Search Result 329, Processing Time 0.023 seconds

Assessment of Climate Change Impact on Evapotranspiration and Soil Moisture in a Mixed Forest Catchment Using Spatially Calibrated SWAT Model (SWAT 모형을 이용한 미래 기후변화가 설마천 혼효림 유역의 증발산과 토양수분에 미치는 영향 평가)

  • Ahn, So Ra;Park, Geun Ae;Jang, Cheol Hee;Kim, Seong Joon
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.6
    • /
    • pp.569-583
    • /
    • 2013
  • This study is to evaluate the future climate change impact on hydrological components in the Seolmacheon ($8.54km^2$) mixed forest catchment located in the northwest of South Korea using SWAT (Soil and Water Assessment Tool) model. To reduce the uncertainty, the model was spatially calibrated (2007~2008) and validated (2009~2010) using daily observed streamflow, evapotranspiration, and soil moisture data. Hydrological predicted values matched well with the observed values by showing coefficient of determination ($R^2$) from 0.74 to 0.91 for streamflow, from 0.56 to 0.71 for evapotranspiration, and from 0.45 to 0.71 for soil moisture. The HadGEM3-RA future weather data of Representative Concentration pathway (RCP) 4.5 and 8.5 scenarios of the IPCC (Intergovernmental Panel on Climate Change) AR5 (Assessment Report 5) were adopted for future assessment after bias correction of ground measured data. The future changes in annual temperature and precipitation showed an upward tendency from $0.9^{\circ}C$ to $4.2^{\circ}C$ and from 7.9% to 20.4% respectively. The future streamflow showed an increase from 0.6% to 15.7%, but runoff ratio showed a decrease from 3.8% to 5.4%. The future predicted evapotranspiration about precipitation increased from 4.1% to 6.8%, and the future soil moisture decreased from 4.3% to 5.5%.

Application and Comparison of Dynamic Artificial Neural Networks for Urban Inundation Analysis (도시침수 해석을 위한 동적 인공신경망의 적용 및 비교)

  • Kim, Hyun Il;Keum, Ho Jun;Han, Kun Yeun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.5
    • /
    • pp.671-683
    • /
    • 2018
  • The flood damage caused by heavy rains in urban watershed is increasing, and, as evidenced by many previous studies, urban flooding usually exceeds the water capacity of drainage networks. The flood on the area which considerably urbanized and densely populated cause serious social and economic damage. To solve this problem, deterministic and probabilistic studies have been conducted for the prediction flooding in urban areas. However, it is insufficient to obtain lead times and to derive the prediction results for the flood volume in a short period of time. In this study, IDNN, TDNN and NARX were compared for real-time flood prediction based on urban runoff analysis to present the optimal real-time urban flood prediction technique. As a result of the flood prediction with rainfall event of 2010 and 2011 in Gangnam area, the Nash efficiency coefficient of the input delay artificial neural network, the time delay neural network and nonlinear autoregressive network with exogenous inputs are 0.86, 0.92, 0.99 and 0.53, 0.41, 0.98 respectively. Comparing with the result of the error analysis on the predicted result, it is revealed that the use of nonlinear autoregressive network with exogenous inputs must be appropriate for the establishment of urban flood response system in the future.

A modification of SWMM to simulate permeable pavement, and the effect analysis on a release of treated wastewater and the permeable pavement (투수성 포장을 고려한 SWMM의 수정 및 하수처리 재이용수와 투수성 포장의 효과분석)

  • Lee, Jung-Min;Lee, Sang-Ho;Lee, Kil-Seong
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.2 s.163
    • /
    • pp.109-120
    • /
    • 2006
  • Permeable pavement and release of treated wastewater into streams can increase streamflow of urban streams for a dry weather period. A SWMM code was modified to have a permeable pavement option. The modified SWMM was applied to continuous simulations of urban runoff from Hakuicheon watershed and it was used to analyse the effect of a permeable pavement installation and the reuse of treated wastewater. A critical error in the pan coefficient multiplication was also corrected in the modification. The analysis results of the reuse of treated wastewater is as follows: The low flow ($Q_{275}$) increases by 1.63 times as much as the current one and the drought flow ($Q_{355}$) increases by 3.57 times as much as the current one. If the impervious area in the Hakuicheon watershed is replaced with the permeable pavement area by 10 percent, the low flow and the drought flow increases by 3 percent and 17 percent, respectively. The results shows the effectiveness of the release of treated wastewater into stream to increase urban streamflow. The permeable pavement installation also play a minor role in the drought flow increase.

A study on the adsorption characteristic and safety assessment of railway subsoil material (철도 노반 재료의 중금속 흡착특성과 안전성에 관한 연구)

  • Paek, Seoungbong;Gil, Kyungik
    • Journal of Wetlands Research
    • /
    • v.17 no.2
    • /
    • pp.146-154
    • /
    • 2015
  • Domestic railway industry has grown in numbers, scale of railway ndustrial and operation because was focused on an environmentally sustainable transportation. However, it is not enough to treat and prevent heavy metals which occur as the railway operation increases. The heavy metals occurred when the operating railway and it will be flow into water system with rainfall effluent during rainfall. will flow out along with the rainfall effluent when rainfall comes. In case of a railway bridge, In particular, heavy metals were flow into the water system without any treatment from railway bridges where located nearby rivers and lakes. So, rainfall effluent from railway facilities was occurred pollution of water system. For the prevent of heavy metal runoff during rainfall, the adsorptivity of material in railway roadbed is important.In this study, adsorptivity of gravel which is main gravel and blast-furnace slag were conducted adsorption test and deducted Freundlich's and Langmuir's isothermal adsorption equations. Safety as railway subbase course material was evaluated using modeling. As a result, absorption amount of slag, Cd and Cu, was shown higher than gravel and Pb along with Zn showed higher absorption amount of gravel. However, absorption amount of slag was shown higher than gravel used as railway subbase course material as time passes by. Absorption features had more suitable determination coefficient of heavy metals in warm absorption type such as Langnmuir compared to warm absorption type like Freundlich. To add, they showed less transformation by about 10% compared to gravel in safety evaluation through modeling. This is a railway subbase course material that prevents water outflow of heavy metal thus we can know slag is needed to be used.

Assessment of Climate Change Impact on Imha-Dam Watershed Hydrologic Cycle under RCP Scenarios (RCP 기후변화 시나리오에 따른 임하댐 유역의 미래 수문순환 전망)

  • Jang, Sun-Sook;Ahn, So-Ra;Joh, Hyung-Kyung;Kim, Seong-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.18 no.1
    • /
    • pp.156-169
    • /
    • 2015
  • This study was to evaluate the RCP climate change impact on hydrological components in the Imha-Dam watershed using SWAT(Soil and Water Assessment Tool) Model. The model was calibrated for six year(2002~2007) and validated for six year(2008~2013) using daily observed streamflow data at three watershed stations. The overall simulation results for the total released volume at this point appear reasonable by showing that coefficient of determination($R^2$) were 0.70~0.85 and Nash-Sutcliffe model efficiency(NSE) were 0.67-0.82 for streamflow, respectively. For future hydrologic evaluation, the HadGEM3-RA climate data by scenarios of Representative Concentration Pathway(RCP) 4.5 and 8.5 of the Korea Meteorological Administration were adopted. The biased future data were corrected using 34 years(1980~2013, baseline period) of weather data. Precipitation and temperature showed increase of 10.8% and 4.9%, respectively based on the baseline data. The impacts of future climate change on the evapotranspiration, soil moisture, surface runoff, lateral flow, return flow and streamflow showed changes of +11.2%, +1.9%, +10.0%, +12.1%, +18.2%, and +11.2%, respectively.

Analysis of storm effects on floods using runoff coefficient (유출계수를 이용한 호우가 홍수에 미치는 영향 분석)

  • Kim, Nam Won;Shin, Mun-Ju
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.265-265
    • /
    • 2016
  • 호우가 홍수에 미치는 영향의 분석은 수문현상을 이해하고 수공구조물을 설계하는데 반드시 필요한 절차이다. 호우가 홍수에 미치는 영향을 분석하기 위해서 독립된 소유역부터 비독립된 대유역까지 홍수량을 계산하고 그 상관성을 이해해야 하지만 상류쪽의 소유역의 경우 관측자료의 부재가 빈번하여 이러한 전반적인 분석이 쉽지 않다. 그리고 소유역과 대유역의 홍수특성을 연관지어 분석하기 위해서는 비교가능한 홍수특성을 추출해야 하며 이러한 일관된 잣대를 사용한 홍수분석은 중요하다. 본 연구에서는 소유역의 자료부재를 보완하기 위해 자료공간확장 방법을 제안하고 이를 통하여 안동댐 유역내 총 50개 지점의 홍수 시계열자료를 생성하였다. 자료공간확장 방법으로써, 안동댐유역의 1989년부터 2009년까지의 자료의 질이 좋은 20개의 사상을 추출하였고 안동댐유역 내에 위치한 안동댐, 도산, 소천의 수위관측지점의 관측유량자료에 대해 분포형 모형인 GRM 모형의 매개변수를 시행착오법으로 동시에 보정하여 한 개셋의 최적 매개변수를 추정하였다. 이때 모의결과를 평가하기 위하여 Nash-Sutcliffe (NS) 계수를 사용하였으며 20갯 사상의 세군데 관측수위지점에 대해서 모의결과가 전반적으로 0.5 NS 계수 이상으로써 만족할 만한 결과를 얻었다. 이 추정된 매개변수는 47개의 추가적인 관심지점의 유출모의에 사용되었으며 이렇게 모의된 유출시계열 자료는 관측시계열 자료로 가정하여 사용하였다. 이렇게 공간확장되어 생성된 시계열 자료는 이동평균방법을 사용하여 홍수강도-지속시간 곡선으로 변환되었고 50개 유역의 평균강우량 시계열 자료 또한 같은 밥법을 사용하여 강우강도-지속시간 곡선으로 변환되었다. 50개 유역의 비교가능한 일관된 홍수특성을 추출하기 위해 비유량법의 유출계수를 계산하였다. 유출계수를 계산하기 위해 유역별 도달시간을 계산하였으며 이 도달시간에 해당하는 강우강도를 추출하였다. 그리고 유역별 첨두 홍수강도를 유역별 도달시간에 해당하는 강우강도로 나눠줌으로써 유역별 유출계수를 계산하였고 이 유출계수를 유역면적에 대해 도시함으로써 그 경향을 조사하였다. 조사 결과 유역면적이 $100km^2$ 이상으로써 상류에서 하류방향으로 유역이 중첩되면서 증가하는 비독립적인 유역들의 경우 유역면적이 증가함에 따라 유출계수가 작아지거나 커지는 어떠한 경향을 보였다. 하지만 유역면적이 $100km^2$ 이하로써 독립적인 소유역의 경우 유역면적이 증가함에 따라 유출계수는 무작위로 분포되었다. 이것은 비독립적인 유역의 경우에는 호우가 홍수에 어떠한 일관된 영향을 미치나 각각 독립된 소유역의 경우에는 일관된 영향을 미치지 않음으로써 지역화방법에 의한 독립된 인근 미계측유역의 유출추정은 그 신뢰성이 높지 않다는 것을 의미한다.

  • PDF

Development of water circulation status estimation model by using multiple linear regression analysis of urban characteristic factors (도시특성 요인의 다중선형회귀 분석을 이용한 물순환상태추정모델 개발)

  • Kim, Youngran;Hwang, Seonghwan;Lee, Yunsun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.6
    • /
    • pp.503-512
    • /
    • 2020
  • Identifying the water circulation status is one of the indispensable processes for watershed management in an urban area. Recently, various water circulation models have been developed to simulate the water circulation, but it takes a lot of time and cost to make a water circulation model that could adapt the characteristics of the watershed. This paper aims to develop a water circulation state estimation model that could easily calculate the status of water circulation in an urban watershed by using multiple linear regression analysis. The study watershed is a watershed in Seoul that applied the impermeable area ratio in 1962 and 2000. And, It was divided into 73 watersheds in order to consider changes in water circulation status according to the urban characteristic factors. The input data of the SHER(Similar Hydrologic Element Response) model, a water circulation model, were used as data for the urban characteristic factors of each watershed. A total of seven factors were considered as urban characteristic factors. Those factors included annual precipitation, watershed area, average land-surface slope, impervious surface ratio, coefficient of saturated permeability, hydraulic gradient of groundwater surface, and length of contact line with downstream block. With significance probabilities (or p-values) of 0.05 and below, all five models showed significant results in estimating the water circulation status such as the surface runoff rate and the evapotranspiration rate. The model that was applied all seven urban characteristics factors, can calculate the most similar results such as the existing water circulation model. The water circulation estimation model developed in this study is not only useful to simply estimate the water circulation status of ungauged watersheds but can also provide data for parameter calibration and validation.

Erodibility evaluation of sandy soils for sheet erosion on steep slopes (급경사면의 면상침식에 대한 사질토양의 침식성 평가)

  • Shin, Seung Sook;Park, Sang Deog;Hwang, Yoonhee
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.4
    • /
    • pp.291-300
    • /
    • 2022
  • Artificial disturbance in mountainous areas increases the sensitivity to erosion by exposure of the subsoil with a low loam ratio to the surface. In this study, rainfall simulations were conducted to evaluate the erodibility of sand and loamy sand in the interrill erosion by the rainfall-induced sheet flow. The mean diameters of sand and loamy sand used in the experiment were 0.936 mm and 0.611 mm, respectively, and the organic matter content was 2.0% and 4.2%, respectively. In the experimental plot, the runoff coefficient of overland flow increased 1.16 times in loamy sand rather than sand. Mean sediment yields of loamy sand and sand by sheet erosion were 3.71kg/m2/hr and 1.13kg/m2/hr respectively. The erodibility, the rate of soil erosion for rainfall erosivity factor, was 3.65 times greater in loamy sand than in sand. As the gradient of the steep slope increased from 24° to 28°, the sediment concentration and the erodibility for two soils increased by about 20%. The erodibility factor K of sandy soils for small plots was overestimated compared to the measured erodibility. This means that RUSLE can overestimate the sediment yields by sheet erosion on sandy soils.

Micromorphological Changes of Rill Development under Simulated Rainfall and Inflow on Steep Slopes (모의 강우와 유입수에 의해 급경사면에서 발달한 세류의 미세지형 변화)

  • Shin, Seung Sook;Sim, Young Ju;Son, Sang Jin;Park, Sang Deog
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.21-32
    • /
    • 2023
  • Interrill erosion dominates in forest areas, and the erosion rate in surface-disturbed areas is significantly increased by the development and expansion of rill. In this study, soil erosion experiments using simulated rainfall and inflow were performed to understand the development and the micromorphological changes of rill on steep slopes. The characteristic factors of the micromorphology, such as the rill cross section, rill volume, rill density, rill order, and rill sharpness, were analyzed according to steepness and location (upper or lower) of slope. The head-cut of the simultaneous incised rills by rainfall simulation moved rapidly upslope, and the randomly developed rills expanded deeply and widely with their connection. The rill cross section evolved to downslope gradually increased. The rill volume occupied about 78 % of the sediment volume, confirming that the contribution of the sediment from the rill erosion is greater than that of the interrill erosion. Although the rate of increase in rill order slowed as the slope increased, the total length and density of the rill generally increased. As the slope increased from 15° to 20°, the bed incision of rills became larger than the sidewall expansion, and the rill sharpness increased by 1.6 times. The runoff coefficient on the lower slope decreased by 12.3 % than that on the upper slope. It was evaluated that the subsoil exposures and formation changes by the rill expansion increased the infiltration rate. Although the sediment accompanying the rills generally increased with slope increase, it was directly influenced by the hydraulic velocity of enhanced rill with the local convergence and expansion in the process of the rill evolution.

Extraction of Snowmelt Parameters using NOAA AVHRR and GIS Technique for 7 Major Dam Watersheds in South Korea (NOAA AVHRR 영상 및 GIS 기법을 이용한 국내 주요 7개 댐 유역의 융설 매개변수 추출)

  • Shin, Hyung Jin;Kim, Seong Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2B
    • /
    • pp.177-185
    • /
    • 2008
  • Accurate monitoring of snow cover is a key component for studying climate and global as well as for daily weather forecasting and snowmelt runoff modelling. The few observed data related to snowmelt was the major cause of difficulty in extracting snowmelt factors such as snow cover area, snow depth and depletion curve. Remote sensing technology is very effective to observe a wide area. Although many researchers have used remote sensing for snow observation, there were a few discussions on the characteristics of spatial and temporal variation. Snow cover maps were derived from NOAA AVHRR images for the winter seasons from 1997 to 2006. Distributed snow depth was mapped by overlapping between snow cover maps and interpolated snowfall maps from 69 meteorological observation stations. Model parameters (Snow Cover Area: SCA, snow depth, Snow cover Depletion Curve: SDC) were built for 7 major watersheds in South Korea. The decrease pattern of SCA for time (day) was expressed as exponentially decay function, and the determination coefficient was ranged from 0.46 to 0.88. The SCA decreased 70% to 100% from the maximum SCA when 10 days passed.