• Title/Summary/Keyword: runoff area

Search Result 1,006, Processing Time 0.079 seconds

Analysis of impact of land cover change on runoff through several Streams in Jeju Island, Korea (토지피복도 변화에 따른 제주도 주요 상시하천의 유출변화 분석)

  • Yang, Sung-Kee;Jung, Woo-Yeol;Han, Woong-Ku
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.11b
    • /
    • pp.1033-1036
    • /
    • 2010
  • Since Jeju island has depended a water resource on the underground water because of a poor development of the surface flow, Jeju island is in need of the surface resource development to prevent the future shortage of the underground water due to excessive development and use of it. The study shows that the SWAT model(continuous rainfall-runoff model) is applied to estimate the outflow in the drainage watershed area, where it has been urbanized through the change of the land, such as a tourism development, cultivation, housing, and impervious layer road development. Near watershed area in Jeju island, weather and topographical SWAT input data were collected, and compared the outflow change of past and present.

  • PDF

IMPERVIOUS SURFACE ESTIMATION USING REMOTE SENSING IMAGES AND TREE REGRESSIOIN

  • Kim, Soo-Young;Kim, Jong-Hong;Heo, Joon;Heo, Jun-Haeng
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.239-242
    • /
    • 2006
  • Impervious surface is an important index for the estimation of urbanization and environmental change. In addition, impervious surface has an influence on the parameters of rainfall-runoff model during rainy season. The increase of impervious surface causes peak discharge increasing and fast concentration time in urban area. Accordingly, impervious surface estimation is an important factor of urban rainfall-runoff model development and calibration. In this study, impervious surface estimation is performed by using remote sensing images such as landsat-7 ETM+ and high resolution satellite image and regression tree algorithm based on case study area ? Jungnang-cheon basin in Korea.

  • PDF

A Study on the Management of Precipitation for the Environmental Friendly Housing Complex -focused on the Contemporary Planning and Example Performed by Berlin- (주거단지의 친환경적 우수처리 실태에 관한 연구 -베를린의 현행 계획 및 사례를 중심으로-)

  • 이태구
    • Journal of the Korean housing association
    • /
    • v.11 no.2
    • /
    • pp.117-127
    • /
    • 2000
  • As urbanization proceeds and therefore impervious surface coverage increases, the amount of runoff goes up and the hydrological cycle is also changed. The surface retention and interception of precipitation in the urban area are reduced because the surface area is now slick and solid. Increasing runoff in building areas of the city causes flood damage, water pollution, reduction of ground water recharge, and the other environmental problems. This paper investigates various techniques of increasing rates in a site development performed by Berlin. The techniques offered in this paper improve sit water balance, and thus keep the site ecosystem much healthier.

  • PDF

Development of Digital Terrain Analysis for an Identification of Wetland Area at Mountainous Watershed (산지습지의 수문지형분석 방법론의 개발)

  • Jang, Eun-Se;Lee, Eun-Hyung;Kim, Sang-Hyun
    • Journal of Environmental Science International
    • /
    • v.24 no.11
    • /
    • pp.1473-1483
    • /
    • 2015
  • In this study, a digital terrain analysis had been performed for a mountainous watershed having wetlands. In order to consider the impact for wetland in the flow determination algorithm, the Laplace equation is implemented into the upslope accounting algorithm of wetness computation scheme. The computational algorithm of wetland to spatial contribution of downslope area and wetness was also developed to evaluate spatially distributed runoff due to the presence of wetland. Developed schemes were applied to Wangpichun watershed located Chuncuk mountain at Ulzingun, South Korea. Both spatial distribution of wetness and its histogram indicate that the developed scheme provides feasible consideration of wetland impact in spatial hydrologic analysis. The impact of wetland to downslope propagation pattern is also useful to evaluate spatially distributed runoff distribution.

Water Balance Estimate of LID Technique for Circulating Urban Design (순환형 도시계획에 따른 LID기술의 물수지 분석)

  • Kang, Sung-Hee;Heo, Woo-Myung;Kang, Sang-Hyeok
    • Journal of Environmental Science International
    • /
    • v.24 no.8
    • /
    • pp.1065-1073
    • /
    • 2015
  • Urbanization can be significantly affected the hydrologic cycle by increasing flood discharge and heat flux. In order to mitigate these modifications in urban areas, Low Impact Development (LID) technique has been designed and applied in Korea. In order to estimate runoff reduction rate using SWMM LID model, the characteristics of five LID techniques was firstly analyzed for water balance. Vegetated swale and green roof were not reduce flood discharge nor infiltration amount. On the other hand, porous pavement and infiltration trench were captured by infiltration function. The flood reduction rate with LID is substantially affected by their structures and properties, e.g., the percentage of the area installed with LID components and the percentage of the drainage area of the LID components.

Apply Low Impact Development for the reduction of runoff using SWMM model (SWMM 모형을 이용한 서암동지구에서의 유출수 저감을 위한 저영향개발기법 적용)

  • Woo, Won Hee;Lee, Tae Woo;Park, Youn Shik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.218-218
    • /
    • 2017
  • Urbanization increases impervious area and decreases the water quantity infiltrating into soil layers. This leads to lack of ground water, it could be possibly problematic for agricultural water for crop growth in lower basins, reducing not only ground water but also streamflow quantities. One such approach to minimize the impact of urbanization is to apply low impact developments (LIDs). LIDs are to decrease the percentage of impervious area so that infiltration rate is increased, there is a need to simulate the LIDs prior to the construction. LIDs in Storm Water Management Model (SWMM) are limited to be seven types, however it is often required to simulate LIDs more than seven types. Therefore an approach to apply eleven LIDs is provided in the study, updating the model parameters. A scenario containing eleven LIDs was given by the environmental decision makers, the effect of LIDs were simulated with the expected annual costs considering establishment and maintenance costs.

  • PDF

Optimal Determination of Loss Rate Functions by Runoff Modelling (유출 모델에 의한 손실함수의 결정)

  • Lee, Ja Hyung;Whang, Man Ha
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.4
    • /
    • pp.57-64
    • /
    • 1985
  • An optimization model is presented that can be used in the determination of a loss rate function and conceptual runoff models using observed rainfall and runoff data. In order to estimate the lumped parameters and to control inputs of the model, the differential equations, linear for underground flow and non-linear for overland flow, are transformed into state equations. Parameters of a loss rate function and runoff model under stationary assumption can be determined by the following procedures: optimization technique, linear control and non-linear curve fitting theory using several multiperiod storms simultaneously or using individual multiperiod storms. An infiltration equation that includes rainful intensity is used to dtermine the effective rainfall for a given rain of varying. The optimization model is applied to storms in Hyong Song watershed of Wonju area. The results of the new model are compared with earlier one.

  • PDF

Effects of Lignocellulosic Growing Media to The Prevention of Forest Soil Erosion

  • Jo, Jong-Soo;Ha, Si Young;Jung, Ji Young;Kim, Ji-Su;Nam, Jeong Bin;Yang, Jae-Kyung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.4
    • /
    • pp.419-431
    • /
    • 2017
  • The forest slopes cause substantial local changes in soil properties and an increase in soil erosion after extreme rainstorms. The high soil erosion rates on forest slopes need the effective use of growing media to control the soil runoff. Therefore, we prepared six different lignocellulosic growing media such as peat, perlite, and wood meal as the base materials and carboxymethyl cellulose (CMC), glucomannan, starch, old corrugated containerboard, and computer printout as the additional materials for the prevention of simulated rainfall-induced runoff. The growing media containing old corrugated containerboard efficiently reduced the percentage of soil runoff; however, it could not completely cushion the influence of crust. The best results for plant growth, except in the leaf area, were also obtained with the growing media containing old corrugated containerboard, suggesting an interesting way of paper recycling and an economic benefit for plant or crop growth in forest slope.

Conjunctive Numerical Model of Surface Runoff and River Flow (지표면-하천 유출의 연계 수치모형)

  • Yu, Dong-Hun;Lee, Jeong-Yeong
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.1
    • /
    • pp.91-103
    • /
    • 2001
  • In this studs, hydraulic routing model has been developed to predict the water level and discharge in each river section with considering the full interaction between surface runoff and river flow. It improved the computation of flood runoff by reflecting the shape of hydrograph that was determined by the geological and flood characteristics, and the excessive computation of the peak discharge was eliminated by considering the effect of infiltration. The Inflow from surface runoff to river flow was applied to the equation of continuity by implementing effectively the flow in a number of river section, and resulted in a numerical stability at the rapid variation of rainfall. Measurements were conducted during heavy rain in the watershed area of Yang-Yang Namdae-Chun. The present model was tested to the field, and the computed results were compared to the observed data. Its applicability was confirmed with its verification.

  • PDF

Regionalization of CN values at Imha Watershed with SCE-UA (최적화 기법을 이용한 임하호유역 대표 CN값 추정)

  • Jeon, Ji-Hong;Kim, Tae-Dong;Choi, Dong-Hyuk
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.5
    • /
    • pp.9-16
    • /
    • 2011
  • Curve Numbers (CN) for the combination of land use and hydrologic soil group were regionalized at Imha Watershed using Long-term Hydrologic Impact Assessment (L-THIA) coupled with SCE-UA. The L-THIA was calibrated during 1991-2000 and validated during 2001-2007 using monthly observed direct runoff data. The Nash-Sutcliffe (NS) coefficients for calibration and validation were 0.91 and 0.93, respectively, and showed high model efficiency. Based on the criteria of model calibration, both calibration and validation represented 'very good' fit with observe data. The spatial distribution of direct surface runoff by L-THIA represented runoff from Thiessen pologen at Subi and Sukbo rain gage station much higher than other area due to the combination of poor hydrologic condition (hydrologic soil C and D group) and locality heavy rainfall. As a results of hydrologic condition and treatment for land use type based on calibrated CNs, forest is recommended to be hydrologically modelled dived into deciduous, coniferous, and mixed forest due to the hydrological difference. The CNs for forest and upland showed the poor hydrologic condition. The steep slope of forest and alpine agricultural field make high runoff rate which is the poor hydrologic condition because CN method can not consider field slope. L-THIA linded with SCE-UA could generated a regionalized CNs for land use type with minimized time and effort, and maximized model's accuracy.