• Title/Summary/Keyword: running-in

Search Result 5,140, Processing Time 0.036 seconds

Analysis on Running Safety for KTX Vehicle (KTX차량의 주행 안전성 해석)

  • Kim Jae-Chul;Lee Chan-Woo;You Won-Hee
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.345-350
    • /
    • 2005
  • KTX is the high speed train which is designed for 300km/h in maximum operation speed. But its long train set may cause unstable characters as swaying of the tail of a train and when the train is running on conventional line, its running safety is a point to be considered cautiously. In this study, we evaluated the running safety by the numerical analysis using VAMPIRE and compared the result with the test result of KHST, which is being in performance tests, for verifying the validity of analysis results

  • PDF

Fast short length running FIR structure in discrete wavelet adaptive algorithm

  • Lee, Chae-Wook
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.13 no.1
    • /
    • pp.19-25
    • /
    • 2012
  • An adaptive system is a well-known method for removing noise from noise-corrupted speech. In this paper, we perform a least mean square (LMS) based on wavelet adaptive algorithm. It establishes the faster convergence rate of as compared to time domain because of eigenvalue distribution width. And this paper provides the basic tool required for the FIR algorithm whose algorithm reduces the arithmetic complexity. We consider a new fast short-length running FIR structure in discrete wavelet adaptive algorithm. We compare FIR algorithm and short-length fast running FIR algorithm (SFIR) to the proposed fast short-length running FIR algorithm(FSFIR) for arithmetic complexities.

A Study on the Running Safety by F26 Turnout and Vehicle Model (F26 분기기 및 열차모델을 이용한 주행안전성 연구)

  • Kim, Sung-Jong;Lee, Hi-Sung
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.6
    • /
    • pp.859-864
    • /
    • 2009
  • When the vehicle passes through turnout, the design is required to minimize the change of lateral force. Therefore, in case the vehicle passed the through turnout, we ought to execute dynamic analysis of the interaction between the vehicle and turnout in order to make an estimate of the lateral force and the derailment coefficient on the turnout. In this paper, we established the analytical model of the vehicle and turnout and analysed running safety when the vehicle passes through turnout in order to improve running safety of the vehicle on turnout. Also, to verify the vehicle and turnout model, we analysed reaction force and running behavior between wheel and rail, and running safety of the vehicle by changing cradle part and the tongue rail when the vehicle passes through turnout.

Relationship between the Impact Peak Force and Lower Extremity Kinematics during Treadmill Running

  • Ryu, Ji-Seon;Park, Sang-Kyoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.28 no.3
    • /
    • pp.159-164
    • /
    • 2018
  • Objective: The aims of this study were to determine the impact peak force and kinematic variables in running speed and investigate the relationship between them. Method: Thirty-nine male heel strike runners ($mean\;age=21.7{\pm}1.6y$, $mean\;mass=72.5{\pm}8.7kg$, $mean\;height=176.6{\pm}6.1cm$) were recruited in this investigation. The impact peak forces during treadmill running were assessed, and the kinematic variables were computed using three-dimensional data collected using eight infrared cameras (Oqus 300, Qualisys, Sweden). One-way analysis of variance ANOVAwas used to investigate the influence of the running speed on the parameters, and Pearson's partial correlation was used to investigate the relationship between the impact peak force and kinematic variables. Results: The running speed affected the impact peak force, stride length, stride frequency, and kinematic variables during the stride phase and the foot angle at heel contact; however, it did not affect the ankle and knee joint angles in the sagittal plane at heel contact. No significant correlation was noted between the impact peak force and kinematic variables in constantrunning speed. Conclusion: Increasing ankle and knee joint angles at heel contact may not be related to the mechanism behind reducing the impact peak force during treadmill running at constant speed.

Effects of Prolonged Running-Induced Fatigue on the Periodicity of Shank-Foot Segment Coupling and Free Torque

  • Ryu, Ji-Seon
    • Korean Journal of Applied Biomechanics
    • /
    • v.26 no.3
    • /
    • pp.257-264
    • /
    • 2016
  • Objective: The purpose of this study was to determine the periodicity of shank-foot segment coupling and free torque before and after fatigue induced by prolonged running. Method: Fifteen young healthy male participants with a rear-foot strike ran on instrumented dual-belt treadmills at 70% of their maximum oxygen uptake for 65 min. Kinematic and ground reaction force data were collected for 20 continuous strides at 5 and 65 min (considered the fatigued condition). The approximate entropy tool was applied to assess the periodicity of the shank internal-external rotation, foot inversion-eversion, shank-foot segment coupling, and free torque for the two running conditions. Results: The periodicity of all studied parameters, except foot inversion-eversion, decreased after 65 min of running (fatigued condition) for 80% of the participants in this study. Furthermore, 60% of the participants showed similarities in the change of periodicity pattern in shank internal-external rotation, coupling, and free torque. Conclusion: The findings indicated that the foot inversion-eversion motion may pose a higher risk of injury than the shank internal-external rotation, coupling, and free torque in the fatigued condition during prolonged running.

Effect of a Prolonged-run-induced Fatigue on the Ground Reaction Force Components (오래 달리기로 인한 피로가 지면반력 성분에 미치는 영향)

  • Ryu, Ji-Seon
    • Korean Journal of Applied Biomechanics
    • /
    • v.23 no.3
    • /
    • pp.225-233
    • /
    • 2013
  • The purpose of this study was to estimate the potential injury via analyzing ground reaction force components that were resulted from a prolonged-run-induced fatigue. For the present study, passive and active components of the vertical ground reaction force were determined from time and frequency domain. Shear components of GRF also were calculated from time and frequency domain. Twenty subjects with rear foot contact aged 20 to 30, no experience in injuries of the extremities, were requested to run on the instrumented tread-mill for 160 minutes at their preference running speed. GRF signals for 10 strides were collected at 5, 35, 65, 95, 125, and 155 minute during running. In conclusions, there were no significant difference in the magnitude of passive force, impact load rate, frequency of the passive and active components in vertical GRF between running times except the magnitude of active force (p<.05). The magnitude of active force was significantly decreased after 125 minute run. The magnitude of maximum peak and maximum frequency of the mediolateral GRF at heel strike and toe-off have not been changed with increasing running time. The time up to the maximum peak of the anteroposterior at heel-strike moment tend to decrease (p<.05), but the maximum peak and frequency of that at heel and toe-off moment didn't depend significantly on running time.

Online railway wheel defect detection under varying running-speed conditions by multi-kernel relevance vector machine

  • Wei, Yuan-Hao;Wang, You-Wu;Ni, Yi-Qing
    • Smart Structures and Systems
    • /
    • v.30 no.3
    • /
    • pp.303-315
    • /
    • 2022
  • The degradation of wheel tread may result in serious hazards in the railway operation system. Therefore, timely wheel defect diagnosis of in-service trains to avoid tragic events is of particular importance. The focus of this study is to develop a novel wheel defect detection approach based on the relevance vector machine (RVM) which enables online detection of potentially defective wheels with trackside monitoring data acquired under different running-speed conditions. With the dynamic strain responses collected by a trackside monitoring system, the cumulative Fourier amplitudes (CFA) characterizing the effect of individual wheels are extracted to formulate multiple probabilistic regression models (MPRMs) in terms of multi-kernel RVM, which accommodate both variables of vibration frequency and running speed. Compared with the general single-kernel RVM-based model, the proposed multi-kernel MPRM approach bears better local and global representation ability and generalization performance, which are prerequisite for reliable wheel defect detection by means of data acquired under different running-speed conditions. After formulating the MPRMs, we adopt a Bayesian null hypothesis indicator for wheel defect identification and quantification, and the proposed method is demonstrated by utilizing real-world monitoring data acquired by an FBG-based trackside monitoring system deployed on a high-speed trial railway. The results testify the validity of the proposed method for wheel defect detection under different running-speed conditions.

Increasing Superelevation on Freeway Interchange Ramp based on Running Speed (주행속도를 고려한 고속도로 나들목 연결로의 편경사 상향조정에 관한 연구)

  • Roh, Jeonghoon;Kim, Hong-bae;Seo, Mu In;Lee, Gil Jae
    • International Journal of Highway Engineering
    • /
    • v.18 no.6
    • /
    • pp.161-171
    • /
    • 2016
  • OBJECTIVES : Many roadway departure crashes on the freeway interchange are due to the running speed being greater than the design speed. This study aims to ensure a safe and pleasant driving experience for the driver by increasing the superelevation based on the running speed on the highway interchange ramp. METHODS : The mean running speed for each type of ramp is calculated on site survey more than 10 interchanges. Using the mean running speed, we calculated the superelevation and the side friction using the method given in "A Policy on Geometric Design of Highways and Street" (Pages 145-166, 2001). Then, we applied the modified method to the superelevation range. Finally, we ensured safety using the Degree of Safety that is proven by the centrifugal acceleration ratio as suggested by Joseph Craus (1978). RESULTS : The mean running speeds are 50 km/h and 65 km/h when the design speeds are 40 km/h and 50 km/h, respectively. After the application of the new method used in this study, the superelevation will be increased by 9.0% and 10.0% when the mean running speeds are 50 km/h and 65 km/h, respectively. CONCLUSIONS : A higher superelevation can give the driver a more comfortable and safe driving environment. However, the driver needs to be aware of snow and low-temperature conditions.

Impact and Shock Attenuation of the Runners with and without Low Back Pain (요통 유무에 따른 달리기 시 충격과 충격 흡수율)

  • Lee, Young-Seong;Ryu, Sihyun;Gil, Ho Jong;Park, Sang-Kyoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.31 no.1
    • /
    • pp.16-23
    • /
    • 2021
  • Objective: The purpose of the study was to compare the acceleration and shock attenuation (SA) of the runners with/without low back pain (LBG vs. NLBG) while running at 2.5 m/s, 3.0 m/s, 3.5 m/s and 4.0 m/s. Method: 15 adults without low back pain (age: 23.13±3.46 years, body weight: 70.13±8.94 kg, height: 176.79±3.68 cm, NLBG) and 7 adults with low back pain (age: 27.14±5.81 years, body weight: 73.10±10.74 kg, height: 176.41±3.13 cm, LBG) participated in this study. LBG was recruited through the VAS pain rating scale. All participants ran on an instrumented treadmill (Bertec, USA). Results: The LBG shows statistically greater vertical acceleration at the distal tibia during running at 3.5 m/s and 4.0 m/s and greater shock attenuation from the distal tibia to the head during running at 3.5 m/s compared with the NLBG during running (p<.05). As the speed increased, there was a statistically significant increase in vertical/resultant acceleration and shock attenuation for both groups. Conclusion: The findings indicated that the runners with low back pain (LBG) experience greater impact and shock attenuation compared with non-low back pain group (NLBG) during fast running. However, it is still inconclusive whether high impact on the lower extremity during running is the main cause of low back pain in the population. Thus, it is suggested that the study on low back pain should observe the characteristics of impact during running with individuals' low back pain experience and clinical symptoms.

Vertical Ground Reaction Force Asymmetry in Prolonged Running

  • Ryu, Ji-Seon
    • Korean Journal of Applied Biomechanics
    • /
    • v.28 no.1
    • /
    • pp.29-35
    • /
    • 2018
  • Objective: The purpose of this study was to determine the asymmetry of vertical ground reaction force (GRF) components between dominant and non-dominant legs in rested and fatigued states in prolonged running. Method: Twenty healthy men, heel strikers, were included (age: $24.00{\pm}5.0years$; height: $176.1{\pm}6.0cm$; body mass: $69.0{\pm}6.0kg$) in this study. Subjects ran on an instrumented treadmill for 130 minutes. During treadmill running, GRF data (1,000 Hz) were collected for 20 strides at five minutes (rested) and 125 minutes (fatigued) running while they were unaware of collecting data. Asymmetry indexes (ASI) were calculated to quantify the asymmetry magnitude in rested and fatigued states. Paired t-test was used to verify the differences between dominant and non-dominant legs in rested and fatigued states. In addition, one-way repeated measure analysis of variance was applied for comparison of ASI of both states. The level of significance was set at p < .05. Results: Passive force peak magnitude, loading rate, and impulse affecting the development of running injury were found significantly greater in dominant leg than in non-dominant leg at rested state (p < .05). However, passive force peak time and active force peak magnitude were found significantly different between legs in fatigued state (p < .05). To determine changes in percentage of asymmetry between legs in both states, ASI was used. ASI for all variables increased in fatigued state; however, no significant differences were found between both states. Conclusion: This study found that fatigue did not affect differences in vertical GRF between dominant and non-dominant legs and asymmetry changes.