• 제목/요약/키워드: ruminant feed

검색결과 170건 처리시간 0.022초

수확 후 배지의 가축 사료화를 위한 느타리 생육배지 톱밥 대체재료 선발 연구 (Sawdust Substitution in Growth Medium of Oyster Mushroom for Using Its By-product Spent Mushroom Substrates as Ruminant Feed)

  • 김정한;장명준
    • 한국균학회지
    • /
    • 제48권4호
    • /
    • pp.407-414
    • /
    • 2020
  • 느타리 수확 후 배지의 가축 사료화를 위해 생육배지의 톱밥을 대체하고자 면실피펠렛, 옥대펠렛, 콘코브를 활용하여 생육시험을 수행하고, 그 수확후 배지의 사료로서 화학성을 분석한 결과는 다음과 같다. 톱밥 대체재료별 혼합배지의 생육결과 콘코브, 면실피펠렛 처리구의 배양기간이 27일, 초발이소요일수 4일, 생육일수 3일 소요되어 전체 재배기간이 34일로 대조와 같았다. 병당 수량은 콘코브 처리구가 134 g으로 대조구 130 g과 유사하였고, 면실피펠렛처리구는 112 g, 옥대펠렛 처리구 68 g으로 낮았다. 생물학적 효율은 콘코브가 80.1%로 대조구 68.7%보다 우수하였다. 톱밥 대체재료별 수확 후 배지의 화학성을 분석한 결과 콘코브 처리구가 대조구에 비해 NDF는 같지만 ADF와 리그닌 함량이 낮고, 단백질 함량은 높아 사료로서 영양학적 가치가 더 우수하였다. 향후, 농가 현장의 적용시험을 통하여 생산성을 검증한다면 느타리 수확 후 배지도 사료로 활용이 가능할 것으로 판단된다.

반추동물에서 발생하는 온실가스의 저감방안 : 총설 (Reducing Greenhouse Gas Emissions in Ruminants : Minireview)

  • 김은중
    • 한국유기농업학회지
    • /
    • 제20권2호
    • /
    • pp.185-200
    • /
    • 2012
  • 지구상의 인구는 계속해서 증가하고 식량의 안정적인 수급은 한 국가의 문제가 아니라 국가와 지역을 뛰어넘는 전 세계적인 문제이다. 경제의 발전과 더불어 개발도상국가들의 육류 및 유제품의 섭취가 급증하고 있고 선진국들의 축산물 섭취량 또한 섭취형태에 차이가 있을 뿐 증가하고 있는 추세이다. 축산물 생산에 따르는 환경파괴, 특히 반추동물산업에 서의 온실가스 발생량은 심각한 것으로 보고되었는데 이러한 온실가스를 줄이기 위한 노력에 전 세계가 동참하고 있다. 이러한 노력의 일환으로 많은 연구가 진행되고 있는데 생산성 및 효율의 증대, 가축 개량 등의 노력이 진행되어 왔고 사양적 측면에서 사료배합기술의 발달, 화학적 첨가제 등을 사용했었다. 이들뿐만 아니라 최근에는 생균제, 식물추출물, 방목지에 적합한 새로운 방목 품종의 개발 등에 연구의 노력이 더해지고 있다. 반추동물산업은 인간이 섭취하지 못하는 식물세포벽 성분이나 비단백태 질소화합물을 이용하여 영양 가치가 우수한 고기와 우유를 생산하므로 다가올 식량안보에 크게 기여할 수 있다. 따라서 반추동물산업은 환경을 저해하는 요소를 줄이고자 지속적인 연구와 노력을 투자한다면 인간에게 고급 단백질을 공급하는 산업으로 오랜 기간 자리매김을 할 수 있을 것이다.

A Safety Evaluation of Genetically Modified Feedstuffs for Livestock Production; the Fate of Transgenic DNA and Proteins

  • Beever, D.E.;Glenn, K.;Phipps, R.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제16권5호
    • /
    • pp.764-772
    • /
    • 2003
  • Two genetic constructs used to confer improved agronomic characteristics, namely herbicide tolerance (HT) in maize and soyabean and insect resistance (Bt) in maize, are considered in respect of feeding to farm livestock, animal performance and the nutritional value and safety of animal products. A review of nucleic acid (DNA) and protein digestion in farm livestock concludes that the frequency of intact transgenic DNA and proteins of GM and non-GM crops being absorbed is minimal/non existent, although there is some evidence of the presence of short fragments of rubisco DNA of non-GM soya in animal tissues. It has been established that feed processing (especially heat) prior to feeding causes significant disruption of plant DNA. Studies with ruminant and non-ruminant farm livestock offered GM feeds demonstrated that animal performance and product composition are unaffected and that there is no evidence of transgenic DNA or proteins of current GM in the products of animals consuming such feeds. On this evidence, current HT and Bt constructs represent no threat to the health of animals, or humans consuming the products of such animals. However as new GM constructs become available it will be necessary to subject these to rigorous evaluation.

INFLUENCE OF DIRECT-FED MICROBIALS ON RUMINAL MICROBIAL FERMENTATION AND PERFORMANCE OF RUMINANTS: A REVIEW

  • Yoon, I.K.;Stern, M.D.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제8권6호
    • /
    • pp.533-555
    • /
    • 1995
  • Direct-fed microbials (DFM) have been used to enhance milk production in lactating cattle and to increase feed efficiency and body weight gain in growing ruminants. Primary microorganisms that have been used as DFM for ruminants are fungal cultures including Aspergillus oryzae and Saccharomyces cerevisiae and lactic acid bacteria such as Lactobacillus or Streptococcus. Attempts have been made to determine the basic mechanisms describing beneficial effects of DFM supplements. Various modes of action for DFM have been suggested including : stimulation of ruminal microbial growth, stabilization of ruminal pH, changes in ruminal microbial fermentation pattern, increases in digestibility of nutrients ingested, greater nutrient flow to the small intestine, greater nutrient retention and alleviation of stress, however, these responses have not been observed consistently. Variations in microbial supplements, dosage level, production level and age of the animal, diet and environmental condition or various combinations of the above may partially explain the inconsistencies in response. This review summarizes production responses that have been observed under various conditions with supplemental DFM and also corresponding modification of ruminal fermentation and other changes in the gastrointestinal tract of ruminant animals.

Spent Wheat Straw Compost of Agaricus bisporus Mushroom as Ruminant Feed

  • Fazaeli, H.;Masoodi, A.R. Talebian
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제19권6호
    • /
    • pp.845-851
    • /
    • 2006
  • Spent compost wheat straw is an available by-product from edible mushroom production, which constitutes a potential pollutant and is cost effective for disposal. This study was conducted to determine the nutritive value as ruminant feed of spent wheat straw compost from Agaricus bisporus mushroom production. The compost was provided from a mushroom farm, the casing soil was removed from the whole compost, and then it was sun dried and sampled for chemical analysis. An experiment was conducted, in which four wheat straw-based diets comprising control (I), 10% spent straw (II), 20% spent straw (III) and 30% spent straw (IV) were tested in a cross-over design using 8 sheep. Dry matter intake (DMI) was 74.0, 73.8, 70.2 and 57.1 and organic matter intake (OMI) was 62.7, 63.4, 58.0 and 44.4 g per kg $BW^{0.75}$ for diets I, II, III and IV, respectively, which, were significantly (p<0.05) lower for diet IV. Digestible OMI was respectively 33.1, 32.6, 30.6 and, 20.2 g per kg $BW^{0.75}$ on the four diets which were significantly (p<0.05) different between the treatments. Inclusion of spent compost straw up to 20% of the diet did not affect the digestibility of DM, OM, CF, ADF and NDF, but the diet containing 30% compost straw had statistically (p<0.05) lower digestibilities. Nitrogen balance was also significantly (p<0.05) different between the treatments.

Utilization of Rice Straw and Different Treatments to Improve Its Feed Value for Ruminants: A Review

  • Sarnklong, C.;Cone, J.W.;Pellikaan, W.;Hendriks, W.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제23권5호
    • /
    • pp.680-692
    • /
    • 2010
  • This paper gives an overview of the availability, nutritive quality, and possible strategies to improve the utilization of rice straw as a feed ingredient for ruminants. Approximately 80% of the rice in the world is grown by small-scale farmers in developing countries, including South East Asia. The large amount of rice straw as a by-product of the rice production is mainly used as a source of feed for ruminant livestock. Rice straw is rich in polysaccharides and has a high lignin and silica content, limiting voluntary intake and reducing degradability by ruminal microorganisms. Several methods to improve the utilization of rice straw by ruminants have been investigated in the past. However, some physical treatments are not practical because of the requirement for machinery or treatments are not economical feasible for the farmers. Chemical treatments, such as NaOH, $NH_3$ or urea, currently seem to be more practical for onfarm use. Alternative treatments to improve the nutritive value of rice straw are the use of ligninolytic fungi (white-rot fungi), with their extracellular ligninolytic enzymes, or specific enzymes degrading cellulose and/or hemicellulose. The use of fungi or enzyme treatments is expected to be a more practical and environmental-friendly approach for enhancing the nutritive value of rice straw and can be costeffective in the future. Using fungi and enzymes might be combined with the more classical chemical or physical treatments. However, available data on using fungi and enzymes for improving the quality of rice straw are relatively scarce.

Rumen fermentation and performance of Hanwoo steers fed total mixed ration with Korean rice wine residue

  • Jeong, Chang-Dae;Mamuad, Lovelia L.;Ko, Jong Youl;Sung, Ha Guyn;Park, Keun Kyu;Lee, Yoo Kyung;Lee, Sang-Suk
    • Journal of Animal Science and Technology
    • /
    • 제58권1호
    • /
    • pp.4.1-4.7
    • /
    • 2016
  • Background: This study was conducted to evaluate the effects of adding Korean rice wine residue (RWR) in total mixed ration (TMR) on in vitro ruminal fermentation and growth performance of growing Hanwoo steers. Methods: For in vitro fermentation, the experimental treatments were Control (Con: 0 % RWR + TMR), Treatment 1 (T1: 10 % RWR + TMR), and Treatment 2 (T2: 15 % RWR + TMR). The rumen fluid was collected from three Hanwoo steers and mixed with buffer solution, after which buffered rumen fluid was transferred into serum bottles containing 2 g dry matter (DM) of TMR added with or without RWR. The samples were then incubated for 0 h, 12 h, 24 h, or 48 h at $39^{\circ}C$ and 100 rpm. For the in vivo experiment, 27 Hanwoo steers (6 months old) with an average weight of $196{\pm}8.66kg$ were subjected to a 24-week feeding trial. The animals were randomly selected and equally distributed into three groups. After which the body weight, feed intake and blood characteristics of each group were investigated. Results: The pH of the treatments decreased significantly relative to the control during the 12 h of incubation. Total gas production and ammonia nitrogen ($NH_3-N$) was not affected by RWR addition. The total volatile fatty acid (VFA) was lower after 24 h of incubation but at other incubation times, the concentration was not affected by treatments. Feed cost was 8 % and 15 % lower in T1 and T2 compared to control. Blood alcohol was not detected and a significant increase in total weight gain and average daily gain were observed in Hanwoo steers fed with RWR. Conclusion: Overall, the results of this study suggest that TMR amended with 15 % RWR can be used as an alternative feed resource for ruminants to reduce feed cost.

Non-Conventional Roughages in Tropical and Sub-Tropical Asian-Australasian Countries - Review -

  • Nitis, I.M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제12권3호
    • /
    • pp.449-459
    • /
    • 1999
  • Non-conventional roughage (NCR) is shrub and tree fodders, crop residues and agroindustrial oy-products which is not commonly used as livestock feed traditionally and commercially. Eventhough many sources of NCR is available, the farmers perceptions on NCR not only vary from country to country in tropical and sub-tropical Asian-Australasian countries, but also vary from region to region within the country. Chemical composition and nutritive value of NCR are not only vary from species to species but also vary between species within the genera, between provenances/cultivars within the species and such variations are affected by season, climatic zone, topography and land utilization. The nutritive value of NCR can be improved by physical, chemical and biological treatments and conservation. Feeding NCR to ruminant and non-ruminant is not only improve performance of the livestock but also economically feasible. Future direction of NCR is inventarization, exchange information through NCR information centre, integration with either agrisilvicultural, agrisilvipastoral or silvipastoral system, and use of genetic engineering to produce high quality NCR that ultimately become conventional roughage for agroindustry and agribissiness.

Effect of flaking on the digestibility of corn in ruminants

  • Kang, Hamin;Lee, Mingyung;Jeon, Seoyoung;Lee, Sang Moon;Lee, Ju Hwan;Seo, Seongwon
    • Journal of Animal Science and Technology
    • /
    • 제63권5호
    • /
    • pp.1018-1033
    • /
    • 2021
  • In this study, we aimed to assess the effect of flaking on the nutrient digestibility of corn grain in ruminants. In this regard, in vitro rumen fermentation, in situ rumen degradability, and in vivo metabolic experiments were performed. The automated gas production technique was used for the in vitro fermentation experiments. Six types of corn flakes with various degrees of gelatinization (32%, 41%, 48%, 66%, 86%, and 89%) were ground and incubated in rumen fluid to measure rumen fermentation characteristics and digestion rate. The in situ degradability of ground corn, whole corn, and corn flakes with 62% and 66% gelatinization was measured by incubation in the rumen of two cannulated Holstein cows. In vivo metabolic experiments were performed using 12 crossbred goats (29.8 ± 4.37 kg) using a 3 × 3 Latin square design. The dietary treatments consisted of ground corn and flaked corn with 48% or 62% gelatinization. In vitro experiments showed that as the degree of gelatinization increased, the digestion rate increased linearly, while the discrete lag time decreased linearly (p < 0.05). The effective rumen dry matter degradability, determined by in situ fermentation, was 37%p lower in corn flakes than ground corn, assuming a passage rate of 6%/h (p < 0.01), and there was no difference between the two flakes. In the in vivo experiment, there was no difference in dry matter intake, average daily gain, feed efficiency, and nitrogen utilization among the treatment groups (p > 0.05); however, the crude fat digestibility was lower for corn flakes than for ground corn (p < 0.05). To summarize, the rate of fermentation of corn flakes increased as the degree of gelatinization increased. However, non-ground corn flakes had lower rumen digestibility and did not improve in vivo apparent nutrient digestibility, compared with ground corn. In contrast to the assumption that flaked corn provides more energy to ruminant animals than ground corn, we conclude that the digestibility and energy value of corn flakes are lower than those of ground corn if mastication does not sufficiently reduce the particle size of corn flakes.

Ruminal ciliates as modulators of the rumen microbiome

  • Tansol Park
    • Animal Bioscience
    • /
    • 제37권2_spc호
    • /
    • pp.385-395
    • /
    • 2024
  • Ruminal ciliates are a fundamental constituent within the rumen microbiome of ruminant animals. The complex interactions between ruminal ciliates and other microbial guilds within the rumen ecosystems are of paramount importance for facilitating the digestion and fermentation processes of ingested feed components. This review underscores the significance of ruminal ciliates by exploring their impact on key factors, such as methane production, nitrogen utilization efficiency, feed efficiency, and other animal performance measurements. Various methods are employed in the study of ruminal ciliates including culture techniques and molecular approaches. This review highlights the pressing need for further investigations to discern the distinct roles of various ciliate species, particularly relating to methane mitigation and the enhancement of nitrogen utilization efficiency. The promotion of establishing robust reference databases tailored specifically to ruminal ciliates is encouraged, alongside the utilization of genomics and transcriptomics that can highlight their functional contributions to the rumen microbiome. Collectively, the progressive advancement in knowledge concerning ruminal ciliates and their inherent biological significance will be helpful in the pursuit of optimizing rumen functionality and refining animal production outcomes.