Reducing Greenhouse Gas Emissions in Ruminants : Minireview

반추동물에서 발생하는 온실가스의 저감방안 : 총설

  • Received : 2012.04.17
  • Accepted : 2012.05.29
  • Published : 2012.06.30

Abstract

It has been reported that world population continues to increase so that a matter of food security can be a world-wide problem for mankind. An anticipated rise in world population of 30% and the subsequent increased demand for food brings with it challenges in terms of global resource usage and food security. However, ruminant livestock production and consumption make a large contribution to the greenhouse gas (GHG) emissions which can be attributable to food production. Given the association between GHG and climate change, this is clearly of great concern to the livestock industry worldwide. Nevertheless, ruminant livestock also play an important role in global food security as they can convert the plant cell wall materials and non-protein nitrogen compounds, found widely in plants but indigestible to all monogastric animals including man, into high value proteins for human consumption. Much effort has been made to maximize animal production, feed conversion ratio, and to improve animal breeding in ruminant agriculture. In addition improving feed formulation techniques, developing chemical additives, plant extracts, and new plant varieties for grazing have been tested. Future ruminant production systems will need to capitalize on important benefits of ruminants. It is therefore suggested that ruminant agriculture has a key role to play in maintaining and enhancing provision of quality proteins and essential nutrients for human being but the challenge of reducing GHG emissions, and methane in particular, needs to be successfully addressed.

지구상의 인구는 계속해서 증가하고 식량의 안정적인 수급은 한 국가의 문제가 아니라 국가와 지역을 뛰어넘는 전 세계적인 문제이다. 경제의 발전과 더불어 개발도상국가들의 육류 및 유제품의 섭취가 급증하고 있고 선진국들의 축산물 섭취량 또한 섭취형태에 차이가 있을 뿐 증가하고 있는 추세이다. 축산물 생산에 따르는 환경파괴, 특히 반추동물산업에 서의 온실가스 발생량은 심각한 것으로 보고되었는데 이러한 온실가스를 줄이기 위한 노력에 전 세계가 동참하고 있다. 이러한 노력의 일환으로 많은 연구가 진행되고 있는데 생산성 및 효율의 증대, 가축 개량 등의 노력이 진행되어 왔고 사양적 측면에서 사료배합기술의 발달, 화학적 첨가제 등을 사용했었다. 이들뿐만 아니라 최근에는 생균제, 식물추출물, 방목지에 적합한 새로운 방목 품종의 개발 등에 연구의 노력이 더해지고 있다. 반추동물산업은 인간이 섭취하지 못하는 식물세포벽 성분이나 비단백태 질소화합물을 이용하여 영양 가치가 우수한 고기와 우유를 생산하므로 다가올 식량안보에 크게 기여할 수 있다. 따라서 반추동물산업은 환경을 저해하는 요소를 줄이고자 지속적인 연구와 노력을 투자한다면 인간에게 고급 단백질을 공급하는 산업으로 오랜 기간 자리매김을 할 수 있을 것이다.

Keywords

References

  1. Babcock, C. J. 1938. Feed Flavors in Milk and Milk Products. Journal of Dairy Science 21: 661-668. https://doi.org/10.3168/jds.S0022-0302(38)93017-6
  2. Bannink, A., M. C. J. Smits, E. Kebreab, J. A. N. Mills, J. L. Ellis, A. Klop, J. France, and J. Dijkstra. 2010. Simulating the effects of grassland management and grass ensiling on methane emission from lactating cows. Journal of Agricultural Science 148: 55-72. https://doi.org/10.1017/S0021859609990499
  3. Beauchemin, K. A., M. Kreuzer, F. O'Mara, and T. A. McAllister. 2008. Nutritional management for enteric methane abatement: a review. Australian Journal of Experimental Agriculture 48: 21-27. https://doi.org/10.1071/EA07199
  4. Bodas, R., S. Lopez, M. Fernandez, R. Garcia-Gonzalez, A. B. Rodriguez, R. J. Wallace and J. S. Gonzalez. 2008. In vitro screening of the potential of numerous plant species as antimethanogenic feed additives for ruminants. Animal Feed Science and Technology 145: 245-258. https://doi.org/10.1016/j.anifeedsci.2007.04.015
  5. Busquet, M., S. Calsamiglia, A. Ferret, M. D. Carro, and C. Kamel. 2005. Effect of garlic oil and four of its compounds on rumen microbial fermentation. Journal of Dairy Science 88: 4393-4404. https://doi.org/10.3168/jds.S0022-0302(05)73126-X
  6. Busquet, M., S. Calsamiglia, A. Ferret, and C. Kamel. 2005. Screening for effects of plant extracts and active compounds of plants on dairy cattle rumen microbial fermentation in a continuous culture system. Animal Feed Science and Technology 124: 597-613.
  7. Busquet, M., S. Calsamiglia, A. Ferret, and C. Kamel. 2006. Plant extracts affect in vitro rumen microbial fermentation. Journal of Dairy Science 89: 761-771. https://doi.org/10.3168/jds.S0022-0302(06)72137-3
  8. Cardozo, P. W., S. Calsamiglia, A. Ferret, and C. Kamel. 2004. Effects of natural plant extracts on ruminal protein degradation and fermentation profiles in continuous culture. Journal of Animal Science 82: 3230-3236. https://doi.org/10.2527/2004.82113230x
  9. Cardozo, P. W., S. Calsamiglia, A. Ferret, and C. Kamel. 2005. Screening for the effects of natural plant extracts at different pH on in vitro rumen microbial fermentation of a high-concentrate diet for beef cattle. Journal of Animal Science 83: 2572-2579. https://doi.org/10.2527/2005.83112572x
  10. Castillejos, L., S. Calsamiglia, A. Ferret and R. Losa. 2007. Effects of dose and adaptation time of a specific blend of essential oil compounds on rumen fermentation. Animal Feed Science and Technology 132: 186-201. https://doi.org/10.1016/j.anifeedsci.2006.03.023
  11. Chaucheyras-Durand, F., N. D. Walker, and A. Bach. 2008. Effects of active dry yeasts on the rumen microbial ecosystem: Past, present and future. Animal Feed Science and Technology 145: 5-26. https://doi.org/10.1016/j.anifeedsci.2007.04.019
  12. Dong, Y., H. D. Bae, T. A. McAllister, G. W. Mathison, and K. J. Cheng. 1999. Effects of exogenous fibrolytic enzymes, alpha-bromoethanesulfonate and monensin on fermentation in a rumen simulation (RUSITEC) system. Canadian Journal of Animal Science 79: 491-498. https://doi.org/10.4141/A99-024
  13. FAO. 2009. The state of food and agriculture - Livestock in the balance, Rome, Italy, Food and Agriculture Organisation of the United Nations.
  14. Gill, M., P. Smith, and J. M. Wilkinson. 2010. Mitigating climate change: the role of domestic livestock. Animal 4: 323-333. https://doi.org/10.1017/S1751731109004662
  15. Goodland, R. and J. Anhang. 2009. Livestock and climate change: What if the key actors in climate change are... cows, pigs, and chickens?, pp. 10-19, The Worldwatch Institute. http://www.worldwatch.org/node/6294
  16. Guan, H., K. M. Wittenberg, K. H. Ominski, and D. O. Krause. 2006. Efficacy of ionophores in cattle diets for mitigation of enteric methane. Journal of Animal Science 84: 1896-1906. https://doi.org/10.2527/jas.2005-652
  17. Hart, K. J., D. R. Yanez-Ruiz, S. M. Duval, N. R. McEwan, and C. J. Newbold. 2008. Plant extracts to manipulate rumen fermentation. Animal Feed Science and Technology 147: 8-35. https://doi.org/10.1016/j.anifeedsci.2007.09.007
  18. IPCC. 2001. Climate change 2001: Working group II: Impacts, adaptation and vulnerability, in: McCarthy, J. J., O. F. Canziani, N. A. Leary, D. J. Dokken & K. S. White (Eds.).
  19. Ledgard, S. F., M. Lieffering, J. McDevitt, M. Boyes and R. Kemp. 2010. A Greenhouse gas footprint study for exported New Zealand lamb, pp. 1-24. http://www.mia.co.nz/docs/ press_releases/greenhouse_gas_footprint_study_for_exported_nz_lamb._march_2010.pdf
  20. Lopez, S., E. McIntosh, R. J. Wallace, and C. J. Newbold. 1999. Effect of adding acetogenic bacteria on methane production by mixed rumen microorganisms. Animal Feed Science and Technology 78: 1-9. https://doi.org/10.1016/S0377-8401(98)00273-9
  21. Lovett, D. K., A. Bortolozzo, P. Conaghan, P. O'Kiely, and F. P. O'Mara. 2004. In vitro total and methane gas production as influenced by rate of nitrogen application, season of harvest and perennial ryegrass cultivar. Grass and Forage Science 59: 227-232. https://doi.org/10.1111/j.1365-2494.2004.00421.x
  22. McAllister, T. A. and C. J. Newbold. 2008. Redirecting rumen fermentation to reduce methanogenesis. Australian Journal of Experimental Agriculture 48: 7-13. https://doi.org/10.1071/EA07218
  23. McGinn, S. M., K. A. Beauchemin, T. Coates, and D. Colombatto. 2004. Methane emissions from beef cattle: Effects of monensin, sunflower oil, enzymes, yeast, and fumaric acid. Journal of Animal Science 82: 3346-3356.
  24. Molero, R., A. Ibars, S. Calsamiglia, A. Ferret, and R. Losa. 2004. Effects of a specific blend of essential oil compounds on dry matter and crude protein degradability in heifers fed diets with different forage to concentrate ratios. Animal Feed Science and Technology 114: 91-104. https://doi.org/10.1016/j.anifeedsci.2003.11.011
  25. Moorby, J. M., R. T. Evans, N. D. Scollan, J. C. Macraet, and M. K. Theodorou. 2006. Increased concentration of water-soluble carbohydrate in perennial ryegrass (Lolium perenne L.). Evaluation in dairy cows in early lactation. Grass and Forage Science 61: 52-59. https://doi.org/10.1111/j.1365-2494.2006.00507.x
  26. Moss, A. R., J.-P. Jouany, and J. Newbold. 2000. Methane production by ruminants: its contribution to global warming. Annales De Zootechnie 49: 231-253. https://doi.org/10.1051/animres:2000119
  27. Niderkorn, V. and R. Baumont. 2009. Associative effects between forages on feed intake and digestion in ruminants. Animal 3: 951-960. https://doi.org/10.1017/S1751731109004261
  28. Odongo, N. E., R. Bagg, G. Vessie, P. Dick, M. M. Or-Rashid, S. E. Hook, J. T. Gray, E. Kebreab, J. France, and B. W. McBride. 2007. Long-term effects of feeding monensin on methane production in lactating dairy cows. Journal of Dairy Science 90: 1781-1788. https://doi.org/10.3168/jds.2006-708
  29. Pitesky, M. E., K. R. Stackhouse, and F. M. Mitloehner. 2009. Clearing the air: Livestock's contribution to climate change Advances in Agronomy, Vol 103, pp. 1-40 (San Diego, Elsevier Academic Press Inc).
  30. Randolph, T. F., E. Schelling, D. Grace, C. F. Nicholson, J. L. Leroy, D. C. Cole, M. W. Dentment, A. Omore, J. Zinsstag, and M. Ruel. 2007. Invited Review: Role of livestock in human nutrition and health for poverty reduction in developing countries. Journal of Animal Science 85: 2788-2800. https://doi.org/10.2527/jas.2007-0467
  31. Reuter, H. D., H. P. Koch, and L. D. Lawson. 1996. Therapeutic effects and applications of garlic and its preparations, In: Koch, H. P. & L. D. Lawson (Eds.) Garlic: The Science and Therapeutic Application of Allium sativum L. and Related Species, pp. 135-213 (Baltimore, MD, USA, Williams and Wilkins).
  32. Russell, J. B. and H. J. Strobel. 1989. Effect of ionophores on ruminal fermentation. Applied and Environmental Microbiology 55: 1-6.
  33. Russell, J. B., H. J. Strobel, and G. J. Chen. 1988. Enrichment and isolation of a ruminal bacterium with a very high specific activity of ammonia production. Applied and Environmental Microbiology 54: 872-877.
  34. Steinfeld, H., P. Gerber, T. Wassenaar, V. Castel, M. Rosales, and C. de Haan. 2006. Livestock's long shadow: environmental issues and options, Rome, Italy, Food and Agriculture Organization of the United Nations.
  35. Tomkins, N. W., S. M. Colegate and R. A. Hunter. 2009. A bromochloromethane formulation reduces enteric methanogenesis in cattle fed grain-based diets. Animal Production Science 49: 1053-1058. https://doi.org/10.1071/EA08223
  36. Ungerfeld, E. M., S. R. Rust, D. R. Boone, and Y. Liu. 2004. Effects of several inhibitors on pure cultures of ruminal methanogens. Journal of Applied Microbiology 97: 520-526. https://doi.org/10.1111/j.1365-2672.2004.02330.x
  37. Valdes, C., C. J. Newbold, K. Hillman, and R. J. Wallace. 1996. Evidence for methane oxidation in rumen fluid in vitro. Satellite Symposiums of the IVth International Symposium on the Nutrition of Herbivores. Annales De Zootechnie 45 (Supplement 1): 351.
  38. Williams, A. G., E. Audsley, and D. L. Sandars. 2006. Determining the environmental burdens and resource use in the production of agricultural and horticultural commodities Defra Research Project IS0205, DEFRA, UK.
  39. World Bank. 2008. Rising food and fuel prices: Addressing the risks to future generations. http://siteresources.worldbank.org/DEVCOMMEXT/Resources/Food-Fuel.pdf
  40. Worldwatch Institute. 2006. State of the World 2006, Washington D.C., USA, The Worldwatch Institute. http://www.worldwatch.org/