• 제목/요약/키워드: rule of mixture

검색결과 259건 처리시간 0.025초

화염 구조에 미치는 연료 및 당량비에 관한 연구 (A Study on the Influence of Equivalence Ratio and Kinds of fuel in Flame Structure)

  • 박상규;최낙정;산하박사
    • 한국분무공학회지
    • /
    • 제3권4호
    • /
    • pp.43-49
    • /
    • 1998
  • In order to clarify the effect of equivalence ratio and kinds of fule in flame structure, a numerical simulation of triple flame developed in a co-flowing methane-air and air stream was carried out by the elementary chemical reaction mechanism. The following conclusions were obtained. Equivalence ratio at which the apparent burning velocity is maximum is a little larger than that of the one-dimensional premixed flame. Apparent burning velocities are two times higher than that of the one-dimensional premixed flame for the methane-air. The flame thrusts out forward in the downstream of the boundary between mixture and air stream, and a part of the flow is bent and forks out in this protruding flame so that a triple flame is originated; this triple flame is composed of fuel rich and lean premixed flame branches and a diffusion flame branch. Near the equivalence ratio at which the burning velocity of rule-dimensional premixed flame is the largest the effect of one-dimensional premixed flame becomes large and the fuel rich premixed flame advances and becomes vertical to the flow direction.

  • PDF

카본 블렉을 함유한 복합재 적층판의 유전율 (Permittivities of the E-Glass Fabric/Epoxy Composite Laminates Containing Carbon Black Dispersion)

  • 김진봉;김태욱
    • Composites Research
    • /
    • 제16권2호
    • /
    • pp.48-53
    • /
    • 2003
  • 본 논문에서는 카본 블랙의 함유율에 따른 유리섬유/에폭시 직조 복합재료 적층판의 유전율에 대한 실험 및 예측방법에 대한 연구를 수행하였다. 유전율 측정은 5 GHz∼18 GHz의 주파수 영역에서 수행하였으며, 복합재료의 유전율은 카본 블랙의 함유율과 주파수의 함수로 얻을 수 있었다. 카본 블랙의 함유율에 따른 복합재료의 유전율을 모사하는 혼합법칙을 얻기 위한 새로운 방법이 제시되었으며. 이 방법에서는 실험적으로 얻기 어려운 카본 블랙 자체의 유전율도 얻을 수 있다. 혼합법칙으로 계산된 복합재료 유전율 결과는 실험적으로 얻은 유전율을 비교적 잘 모사하는 결과를 얻을 수 있었다.

Buckling analysis of sandwich beam reinforced by GPLs using various shear deformation theories

  • Hanifehlou, Sona;Mohammadimehr, Mehdi
    • Computers and Concrete
    • /
    • 제25권5호
    • /
    • pp.427-432
    • /
    • 2020
  • In this research, the buckling analysis of sandwich beam with composite reinforced by graphene platelets (GPLs) in two face sheets is investigated. Three type various porosity patterns including uniform, symmetric and asymmetric are considered through the thickness direction of the core. Also, the top and bottom face sheets layers are considered composite reinforced by GPLs/CNTs based on Halpin-Tsai micromechanics model and extended mixture rule, respectively. Based on various shear deformation theories such as Euler-Bernoulli, Timoshenko and Reddy beam theories, the governing equations of equilibrium using minimum total potential energy are obtained. It is seen that the critical buckling load decreases with an increase in the porous coefficient, because the stiffness of sandwich beam reduces. Also, it is shown that the critical buckling load for asymmetric distribution is lower than the other cases. It can see that the effect of graphene platelets on the critical buckling load is higher than carbon nanotubes. Moreover, it is seen that the difference between carbon nanotubes and graphene platelets for Reddy and Euler-Bernoulli beam theories is most and least, respectively.

Effect of porosity on the bending and free vibration response of functionally graded plates resting on Winkler-Pasternak foundations

  • Benferhat, Rabia;Daouadji, Tahar Hassaine;Mansour, Mohamed Said;Hadji, Lazreg
    • Earthquakes and Structures
    • /
    • 제10권6호
    • /
    • pp.1429-1449
    • /
    • 2016
  • The effect of porosity on bending and free vibration behavior of simply supported functionally graded plate reposed on the Winkler-Pasternak foundation is investigated analytically in the present paper. The modified rule of mixture covering porosity phases is used to describe and approximate material properties of the FGM plates with porosity phases. The effect due to transverse shear is included by using a new refined shear deformation theory. The number of unknown functions involved in the present theory is only four as against five or more in case of other shear deformation theories. The Poisson ratio is held constant. Based on the sinusoidal shear deformation theory, the position of neutral surface is determined and the equation of motion for FG rectangular plates resting on elastic foundation based on neutral surface is obtained through the minimum total potential energy and Hamilton's principle. The convergence of the method is demonstrated and to validate the results, comparisons are made with the available solutions for both isotropic and functionally graded material (FGM). The effect of porosity volume fraction on Al/Al2O3 and Ti-6Al-4V/Aluminum oxide plates are presented in graphical forms. The roles played by the constituent volume fraction index, the foundation stiffness parameters and the geometry of the plate is also studied.

Effects of CNTs waviness and aspect ratio on vibrational response of FG-sector plate

  • Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • 제25권6호
    • /
    • pp.649-661
    • /
    • 2017
  • This paper is motivated by the lack of studies in the technical literature concerning to the influence of carbon nanotubes (CNTs) waviness and aspect ratio on the vibrational behavior of functionally graded nanocomposite annular sector plates resting on two-parameter elastic foundations. The carbon nanotube-reinforced (CNTR) plate has smooth variation of CNT fraction based on the power-law distribution in the thickness direction, and the material properties are also estimated by the extended rule of mixture. In this study, the classical theory concerning the mechanical efficiency of a matrix embedding finite length fibers has been modified by introducing the tube-to-tube random contact, which explicitly accounts for the progressive reduction of the tubes' effective aspect ratio as the filler content increases. Parametric studies are carried out to highlight the influence of CNTs volume fraction, waviness and aspect ratio, boundary conditions and elastic foundation on vibrational behavior of FG-CNT thick sectorial plates. The study is carried out based on three-dimensional theory of elasticity and in contrary to two-dimensional theories, such as classical, the first- and the higher-order shear deformation plate theories, this approach does not neglect transverse normal deformations. The annular sector plate is assumed to be simply supported in the radial edges while any arbitrary boundary conditions are applied to the other two circular edges including simply supported, clamped and free. For an overall comprehension on 3-D vibration of annular sector plates, some mode shape contour plots are reported in this research work.

리튬 이온전지용 알루미늄 박판의 블랭킹 공정에 관한 연구 (Blanking Process of Aluminum Thin Sheet for Lithium Ion Battery)

  • 김민기;김재홍;신현집;문지희;고대철
    • 소성∙가공
    • /
    • 제30권4호
    • /
    • pp.179-185
    • /
    • 2021
  • Lithium ion batteries are generally manufactured by laser and etching using aluminum thin sheet. These processes are relatively expensive and have low productivity. In this study, blanking process of aluminum thin sheet for lithium ion battery was employed to replace laser cutting and etching process, all to reduce the production cost and improve productivity. Mechanical properties for aluminum and coating were determined by experimental results and rule of mixture for FE analysis of blanking process. Normalized Cockcroft-Latham criteria was also applied to describe shear behavior and critical damage values were determined by comparison of analytical and experimental result. We performed FE analysis to investigate the effects of clearance and punch-die radius on sheared surface of aluminum thin sheet and to determine optimal process condition. We manufactured the die set using the determined optimal process and conducted an experiment to confirm the feasibility of blanking process. The sheared surface of manufactured product was observed by optical microscope. As a results, the proposed process conditions successfully achieved the dimensional requirement in production of lithium ion battery parts.

해양심층수와 지하염수의 자원특성 비교분석 (Comparative Analysis of Resources Characteristics for Deep Ocean water and Brine Groundwater)

  • 문덕수;정동호;김현주
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2003년도 추계학술대회 논문집
    • /
    • pp.333-335
    • /
    • 2003
  • Deep Ocean Water is formed within restricted area including polar sea (high latitude) by cooling of surface seawater and globally circulated in the state of insolation with surface seawater. Although not as obvious as estuaries mixing, Brine groundwater is mixture of recirculated seawater and groundwater. Seawater having high osmotic pressure infiltrate into unconfined aquifer where is connected to the sea. The ions dissolved in seawater are present in constant proportions to each other and to the total salt content of seawater. However deviation in ion proportions have been observed in some brine groundwater. Some causes of these exception to the Rule of constant proportions are due to many chemical reactions between periphery soil and groundwater. While Deep Ocean Water (DOW) have a large quantity of functional trace metals and biological affinity relative to brine groundwater, DOW have relatively small amount of harmful bacteria and artificial pollutants.

  • PDF

복합적층판 이론에 의한 철근콘크리트 슬래브교의 해석 (Analysis of Reinforced Concrete Slab Bridges by the Composite Laminates Theory)

  • 한봉구;김덕현
    • 복합신소재구조학회 논문집
    • /
    • 제1권1호
    • /
    • pp.9-15
    • /
    • 2010
  • In this paper, A reinforced concrete slab bridges is analyzed by the composite laminates theory. Both the geometry and the material of the cross section of the reinforced concrete slab bridge are considered symmetrical with respect to the mid-surface so that the bending extension coupling stiffness, Bij = 0, and D16 = D26 = 0. Each longitudinal and transverse steel layer is regarded as a lamina, and material constants of each lamina is calculated by the use of rule of mixture. This slab with simple support is under uniformly distributed vertical and axial loads. In this paper, the finite difference method and specially orthotropic laminates theory are used for analysis. The result of specially orthotropic laminates theory analysis is modified to obtain the solution of the beam analysis. The result of this paper can be used for reinforced concrete slab analysis by the engineers with undergraduate study in near future.

  • PDF

액상과 고상의 유동현상을 고려한 레오로지 성형공정의 표면결함예측을 위한 응고해석 (Solidification Analysis for Surface Defect Prediction of Rheology Forming Process Considering Flow Phenomena of Liquid and Solid Region)

  • 서판기;정영진;강충길
    • 대한기계학회논문집A
    • /
    • 제26권10호
    • /
    • pp.1971-1981
    • /
    • 2002
  • Two-dimensional solidification analysis during rheology forming process of semi-solid aluminum alloy has been studied. Two-phase flow model to investigate the velocity field and temperature distribution is proposed. The proposed mathematical model is applied to the die shape of the two types. To calculate the velocities and temperature fields during rheology forming process, the each governing equations correspondent to the liquid and solid region are adapted. Therefore, each numerical model considering the solid and liquid coexisting region within the semi-solid material have been developed to predict the defects of rheology forming parts. The Arbitrary Boundary Maker And Cell(ABMAC) method is employed to solve the two-Phase flow model of the Navier-Stokes equation. Theoretical model basis of the two-phase flow model is the mixture rule of solid and liquid phases. This approach is based on using the liquid and solid viscosity. The Liquid viscosity is pure liquid state value, however solid viscosity is considered as a function of the shear rate, solid fraction and power law curves.

Buckling and dynamic behavior of the simply supported CNT-RC beams using an integral-first shear deformation theory

  • Bousahla, Abdelmoumen Anis;Bourada, Fouad;Mahmoud, S.R.;Tounsi, Abdeldjebbar;Algarni, Ali;Bedia, E.A. Adda;Tounsi, Abdelouahed
    • Computers and Concrete
    • /
    • 제25권2호
    • /
    • pp.155-166
    • /
    • 2020
  • In this work, the buckling and vibrational behavior of the composite beam armed with single-walled carbon nanotubes (SW-CNT) resting on Winkler-Pasternak elastic foundation are investigated. The CNT-RC beam is modeled by a novel integral first order shear deformation theory. The current theory contains three variables and uses the shear correction factors. The equivalent properties of the CNT-RC beam are computed using the mixture rule. The equations of motion are derived and resolved by Applying the Hamilton's principle and Navier solution on the current model. The accuracy of the current model is verified by comparison studies with others models found in the literature. Also, several parametric studies and their discussions are presented.