Browse > Article
http://dx.doi.org/10.12989/eas.2016.10.6.1429

Effect of porosity on the bending and free vibration response of functionally graded plates resting on Winkler-Pasternak foundations  

Benferhat, Rabia (Laboratoire de Geomateriaux, Departement de Genie Civil, Universite Hassiba Benbouali de Chlef)
Daouadji, Tahar Hassaine (Departement de Genie Civil, Universite Ibn Khaldoun de Tiaret)
Mansour, Mohamed Said (Laboratoire de Geomateriaux, Departement de Genie Civil, Universite Hassiba Benbouali de Chlef)
Hadji, Lazreg (Departement de Genie Civil, Universite Ibn Khaldoun de Tiaret)
Publication Information
Earthquakes and Structures / v.10, no.6, 2016 , pp. 1429-1449 More about this Journal
Abstract
The effect of porosity on bending and free vibration behavior of simply supported functionally graded plate reposed on the Winkler-Pasternak foundation is investigated analytically in the present paper. The modified rule of mixture covering porosity phases is used to describe and approximate material properties of the FGM plates with porosity phases. The effect due to transverse shear is included by using a new refined shear deformation theory. The number of unknown functions involved in the present theory is only four as against five or more in case of other shear deformation theories. The Poisson ratio is held constant. Based on the sinusoidal shear deformation theory, the position of neutral surface is determined and the equation of motion for FG rectangular plates resting on elastic foundation based on neutral surface is obtained through the minimum total potential energy and Hamilton's principle. The convergence of the method is demonstrated and to validate the results, comparisons are made with the available solutions for both isotropic and functionally graded material (FGM). The effect of porosity volume fraction on Al/Al2O3 and Ti-6Al-4V/Aluminum oxide plates are presented in graphical forms. The roles played by the constituent volume fraction index, the foundation stiffness parameters and the geometry of the plate is also studied.
Keywords
porosity coefficient; FGM plate; bending and free vibration behavior; elastic foundation;
Citations & Related Records
Times Cited By KSCI : 10  (Citation Analysis)
연도 인용수 순위
1 Bennai, R., Ait Atmane, H. and Tounsi, A. (2015), "A new higher-order shear and normal deformation theory for functionally graded sandwich beams", Steel Compos. Struct., 19(3), 521-546.   DOI
2 Brischetto, S. and Carrera, E. (2010), "Advanced mixed theories for bending analysis of functionally graded plates", Comput. Struct., 88(23-24), 1474-1483.   DOI
3 Brischetto, S. (2013), "Exact elasticity solution for natural frequencies of functionally graded simplysupported structures", Comput. Model. Eng. Sci., 95(5), 391-430.
4 Bodaghi, M. and Saidi, A.R. (2011), "Stability analysis of functionally graded rectangular plates under nonlinearly varying in-plane loading resting on elastic foundation", Arch. Appl. Mech., 81(6), 765-780.   DOI
5 Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Adda Bedia, E.A. (2014), "A novel higher order shear and normal deformation theory based on neutral surface position for bending analysis of advanced composite plates", Int. J. Comput. Meth., 11(6), 1350082.   DOI
6 Carrera, E., Brischetto, S., Cinefra, M. and Soave, M. (2010), "Refined and advanced models for multilayered plates and shells embedding functionally graded material layers", Mech. Adv. Mater. Struct., 17(8), 603-621.   DOI
7 Carrera, E., Brischetto, S., Cinefra, M. and Soave, M. (2011), "Effects of thickness stretching in functionally graded plates and shells", Compos Part B: Eng., 42(2), 123-133.
8 Dozio, L. (2014), "Exact free vibration analysis of Levy FGM plates with higher-order shear and normal deformation theories", Compos. Struct., 111(1), 415-425.   DOI
9 Efraim, E. and Eisenberger, M. (2007), "Exact vibration analysis of variable thickness thick annular isotropic and FGM plates", J. Sound Vib., 299(4), 720-738.   DOI
10 Fallah, A., Aghdam, M.M. and Kargarnovin, M.H. (2013), "Free vibration analysis of moderately thick functionally graded plates on elastic foundation using the extended Kantorovich method", Arch. Appl. Mech., 83(2), 177-191.   DOI
11 Fazzolari, F.A. and Carrera, E. (2014), "Coupled thermoelastic effect in free vibration analysis of anisotropic multilayered plates and FGM plates by using a variable-kinematics Ritz formulation", Eur. J. Mech. A/Solid., 44, 157-174.   DOI
12 Hadji, L. and Adda Bedia, E.A. (2015a), "Influence of the porosities on the free vibration of FGM beams", Wind Struct., 21(3), 273-287.   DOI
13 Hadji, L., Hassaine Daouadji, T. and Adda Bedia, E.A. (2015b), "A refined exponential shear deformation theory for free vibration of FGM beam with porosities", Geomech. Eng., 9(3), 361-372   DOI
14 Hamidi, A., Houari, M.S.A., Mahmoud, S.R. and Tounsi, A. (2015), "A sinusoidal plate theory with 5-unknowns and stretching effect forthermomechanical bending of functionally graded sandwich plates", Steel Compos. Struct., 18(1), 235-253.   DOI
15 Hasani Baferani, A., Saidi, A.R. and Ehteshami, H. (2011), "Accurate solution for free vibration analysis of functionally graded thick rectangular plates resting on elastic foundation", Compos. Struct., 93(7), 1842-1853.   DOI
16 Hirai, T. (1996), "Functional gradient materials", Proc. Ceramics-Part 2 in Mater. Sci. Technol., 17B, 293-341.
17 Huang, Z.Y., Lu, C.F. and Chen, W.Q. (2008), "Benchmark solutions for functionally graded thick plates resting on Winkler-Pasternak elastic foundations", Compos. Struct., 85(2), 95-104.   DOI
18 Gan, B.S., Trinh, T.H., Le, T.H. and Nguyen, D.K. (2015), "Dynamic response of non-uniform Timoshenko beams made of axially FGM subjected to multiple moving point loads", Struct. Eng. Mech., 53(5), 981-995.   DOI
19 Hosseini-Hashemi, S., Fadaee, M. and Atashipour, S.R. (2011a), "A new exact analytical approach for free vibration of Reissner-Mindlin functionally graded rectangular plates", Int. J. Mech. Sci., 53(1), 11-22.   DOI
20 Hosseini-Hashemi, S., Fadaee, M. and Taher, H.R.D. (2011b), "Exact solutions for free flexural vibration of Levy-type rectangular thick plates via third-order shear deformation plate theory", Appl. Math. Model., 35(2), 708-727.   DOI
21 Kitipornchai, S., Yang, J. and Liew, K.M. (2004), "Semi-analytical solution for nonlinear vibration of laminated FGM plates with geometric imperfections", Int. J. Solid. Struct., 41(9-10), 2235-2257.   DOI
22 Lam, K.Y., Wang, C.M. and He, X.Q. (2002), "Canonical exact solutions for Levy-plates on two parameter foundation using Green's functions", Eng. Struct., 22(4), 364-378.   DOI
23 Meksi, A., Benyoucef, S., Houari, M.S.A and Tounsi, A. (2015), "A simple shear deformation theory based on neutral surface position for functionally graded plates resting on Pasternak elastic foundations", Struct. Eng. Mech., 53(6), 1215-1240.   DOI
24 Neves, A.M.A., Ferreira, A.J.M., Carrera, E., Cinefra, M., Roque, C.M.C., Jorge, R.M.N. and Soares, C.M.M. (2013), "Static, free vibration and buckling analysis of isotropic and sandwich functionally graded plates using a quasi-3D higher-order shear deformation theory and a meshless technique", Compos. Part B: Eng., 44(1), 657-674.   DOI
25 Pradhan, K.K. and Chakraverty, S. (2015), "Free vibration of functionally graded thin elliptic plates with various edge support", Struct. Eng. Mech., 53(2), 337-354.   DOI
26 Nguyen, D.D. and Pham, H.C. (2013), "Nonlinear postbuckling of symmetric S-FGM plates resting on elastic foundations using higher order shear deformation plate theory in thermal environments", Compos. Struct., 100, 566-574.   DOI
27 Pasternak, P.L. (1954), "On a new method of analysis of an elastic foundation by means of two foundation constants", Gosudarstvennoe Izdatelstvo Literaturi po Stroitelstvu I Arkhitekture Moscow USSR, 1-56. (in Russian)
28 Pindera, M.J., Arnold, S.M., Aboudi, J. and Hui, D. (1994), "Use of composite in functionnaly graded materials", Compos. Eng., 4(1), 1-145.   DOI
29 Prakash, T., Singha, M.K. and Ganapathi, M. (2009), "Influence of neutral surface position on the nonlinear stability behavior of functionally graded plates", Comput. Mech., 43(3), 341-350.   DOI
30 Qian, L.F., Batra, R.C. and Chen, L.M. (2004), "Static and dynamic deformations of thick functionally graded elastic plates by using higher-order shear and normal deformable plate theory and meshless local Petrov-Galerkin method", Composites: Part B., 35(6), 685-697.   DOI
31 Srinivas, S., Joga Rao, C.V. and Rao, A.K. (1970), "An exact analysis for vibration of simply-supported homogeneous and laminated thick rectangular plates", J. Sound. Vib., 12(2), 187-199.   DOI
32 Talha, M. and Singh, B.N. (2010), "Static response and free vibration analysis of FGM plates using higher order shear deformation theory", Appl. Math. Model., 34(12), 3991-4011.   DOI
33 Tounsi, A., Houari, M.S.A., Benyoucef, S. and Adda Bedia, E.A. (2013), "A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates", Aero. Sci. Technol., 24(1), 209-220.   DOI
34 Thai, H.T. and Choi, D.H. (2011), "A refined plate theory for functionally graded plates resting on elastic foundation", Compos. Sci. Technol., 71(16), 1850-1858.   DOI
35 Thai, H.T. and Choi, D.H. (2012), "A refined shear deformation theory for free vibration of functionally graded plates on elastic foundation", Composites: Part B., 43(5), 2335-2347.   DOI
36 Thai, H.T. and Choi, D.H. (2014), "Zeroth-order shear deformation theory for functionally graded plates resting on elastic foundation", Int. J. Mech. Sci., 78, 35-43.   DOI
37 Vel, S.S. and Batra, R.C. (2004), "Three-dimensional exact solution for the vibration of functionally graded rectangular plates", J. Sound Vib., 272(3), 703-730.   DOI
38 Wattanasakulpong, N., Gangadhara Prusty, B., Kelly, D.W. and Hoffman, M. (2012), "Free vibration analysis of layered functionally graded beams with experimental validation", Mater. Des., 36, 182-190.   DOI
39 Wattanasakulponga, N. and Ungbhakornb, V. (2014), "Linear and non linear vibration analysis of elastically restrained ends FGM beams with porosities", Aero. Sci. Technol., 32(1), 111-120.   DOI
40 Zenkour, A.M., Mashat, D.S. and Elsiba, K.A. (2009), "Bending analysis of functionally graded plates in the context of different theories of thermoelasticity", Math. Prob. Eng., 962351.
41 Zhang, D.G. and Zhou, Y.H. (2008), "A theoretical analysis of FGM thin plates based on physical neutral surface", Comput. Mater. Sci., 44(2), 716-720.   DOI
42 Belabed, Z., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Anwar, B.O. (2014), "An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates", Composites: Part B., 60, 274-283.   DOI
43 Zhu, J., Lai, Z., Yin, Z., Jeon, J. and Lee, S. (2001), "Fabrication of ZrO2-NiCr functionally graded material by powder metallurgy", Mater. Chem. Phys., 68(1-3), 130-135.   DOI
44 Ait Atmane, H., Tounsi, A. and Bernard, F. (2015a), "Effect of thickness stretching and porosity on mechanical response of a functionally graded beams resting on elastic foundations", Int. J. Mech. Mater., 1-14.
45 Ait Atmane, H., Tounsi, A., Bernard, F. and Mahmoud, S.R. (2015b), "A computational shear displacement model for vibrational analysis of functionally graded beams with porosities", Steel Compos. Struct., 19(2), 369-385.   DOI
46 Ait Yahia, S., Ait Atmane, H., Houari, M.S.A. and Tounsi, A. (2015), "Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories", Struct. Eng. Mech., 53(6), 1143-1165.   DOI
47 Bakora, A. and Tounsi, A. (2015), "Thermo-mechanical post-buckling behavior of thick functionally graded plates resting on elastic foundations", Struct. Eng. Mech., 56(1), 85-106.   DOI