• Title/Summary/Keyword: rubber aggregate

Search Result 33, Processing Time 0.021 seconds

Vibration Damping Ratio Performance Evaluation According to the Polymer Mixing Rate of SBR-based Polymer Modified Mortar through Ultrasonic Pulse Analysis (초음파 펄스 분석을 통한 SBR계 폴리머 혼입 모르타르의 폴리머 혼입률에 따른 진 동감쇠비 성능 평가)

  • Jeong, Min-Goo;Jang, Jong-Min;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.6
    • /
    • pp.543-551
    • /
    • 2022
  • The mechanical performance and vibration damping ratio performance of a specimen according to the polymer mixing rate were evaluated for polymer modified mortar. As a polymer, Styrene Butadiene Rubber(SBR) liquid polymer with a solid content of about 49~51% was used, and the polymer content was increased by liquid 5%. The specimen was 40*40*160(mm), and after curing, compressive strength, flexural strength, and vibration damping ratio were measured using the ultrasonic pulse method. As a result, it was found that the compressive strength decreased as the polymer was mixed, but the flexural strength was increased. The vibration damping ratio increased by 11% at 5% polymer, 28% at 10% polymer, 33% at 15% polymer, and 72 at 20% polymer. I was found that the incorporation of the polymer was very effective to reduce the vibration of the mortar. In addition, through SEM and SEM-EDS analysis, it is determined that the cause of vibration reduction due to polymer mixing is that the polymer film formed in the transition zone of aggregate and internal voids buffered the vibration of the mortar inside. Taken together, in the scope of this study, the appropriate polymer mixing ratio for reducing the vibration of mortar is judged to be about 7.5%.

Effect of Carbon-based Nanofillers on the Toughening Behavior of Epoxy Resin

  • Lee, Gi-Bbeum;Kim, Haeran;Shin, Wonjae;Jeon, Jinseok;Park, In-Seok;Nah, Changwoon
    • Elastomers and Composites
    • /
    • v.56 no.3
    • /
    • pp.179-186
    • /
    • 2021
  • Carbon-based nanofillers, including nanodiamond (ND) and carbon nanotubes (CNTs), have been employed in epoxy matrixes for improving the toughness, using the tow prepreg method, of epoxy compounds for high pressure tanks. The reinforcing performance was compared with those of commercially available toughening fillers, including carboxyl-terminated butadiene acrylonitrile (CTBN) and block copolymers, such as poly(methyl methacrylate)-b-poly(butyl acrylate)-b-poly(methyl methacrylate) (BA-b-MMA). CTNB improved the mechanical performance at a relatively high filler loading of ~5 phr. Nanosized BA-b-MMA showed improved performance at a lower filler loading of ~2 phr. However, the mechanical properties deteriorated at a higher loading of ~5 phr because of the formation of larger aggregates. ND showed no significant improvement in mechanical properties because of aggregate formation. In contrast, surface-treated ND with epoxidized hydroxyl-terminated polybutadiene considerably improved the mechanical properties, notably the impact strength, because of more uniform dispersion of particles in the epoxy matrix. CNTs noticeably improved the flexural strength and impact strength at a filler loading of 0.5 phr. However, the improvements were lost with further addition of fillers because of CNT aggregation.

Evaluation of Impact Energy Absorption Characteristics of Flexible Sand Asphalt Pavement for Pedestrian Way (보도용 연성 샌드 아스팔트 포장의 충격흡수 특성 평가)

  • Choi, Chang-jeong;Dong, Baesun;Kim, Kwang W.;Kim, Sungun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.3
    • /
    • pp.31-41
    • /
    • 2019
  • More than 90% of roadway in the world are paved as asphalt concrete pavement due to its excellent properties compared with other paving materials; excellent riding quality, flexibility, anti-icing property and easy maintenance-ability. In this study, to make best use of the softer property of the asphalt mixture, the flexible sand asphalt mixture (FSAM) was developed for pedestrian ways. The mix design was conducted to prepare FSAM using PG64-22 asphalt, screenings (sand) less than 5mm, crumb rubber, hydrated lime and limestone powder without coarse aggregate. The deformation strength ($S_D$), indirect tensile strength (ITS) and tensile strength ratio (TSR) tests were conducted to make sure durability of FSAM performance. The impact energy absorption and flexibility were measured by drop-boll test and the resilient modulus ($M_R$) test. The impact energy absorption of FSAM was compared with normal asphalt pavement, concrete pavement, stone and concrete block for pedestrian way. As a result of drop-boll test, FSAM showed higher impact energy absorption compared with other paving materials with the range of 18% to 43%. Impact energy absorption of FSAM increased with increasing test temperature from 5 to $40^{\circ}C$. The results of $M_R$ test at $5^{\circ}C$ showed that the flexibility of FSPA was increased further, because the $M_R$ value of the sand asphalt was measured to be 38% lower than normal dense-graded asphalt mixture (WC-1). Therefore, it was concluded that the FSAM could provide a high impact absorbing characteristics, which would improve walking quality of the pedestrian ways.