• 제목/요약/키워드: rsm method

검색결과 498건 처리시간 0.023초

Biomechanical Evaluation of the Neck and Shoulder When Using Pillows with Various Inner Materials

  • Kim, Jung-Yong;Park, Ji-Soo;Park, Dae-Eun
    • 대한인간공학회지
    • /
    • 제30권2호
    • /
    • pp.339-347
    • /
    • 2011
  • Objective: The purpose of this study was to evaluate of various material of pillows by using biomechanical variables such as the cervical stability, head pressure distribution, and muscle activity. Method: Eight subjects participated in the experiment. Three different materials such as polyester sponge, memory foam and the buckwheat shell used for Korean traditional pillow were tested. Electro-goniometer, six channels of electromyography(EMG), ten channels of the head pressure sensors were used to measure the biomechanical responses. Surface electrodes were attached to the right/left semispinals capitis(RSC, LSC), the right/left sternocleidomastoid(RSM, LSM), the right/left upper trapezius(RUT, LUT). The cervical stability was evaluated by the angle deviated from the standing neck position. The head pressure distribution was evaluated by the pressure per unit area recorded on the sensors and the intensity of peak pressure. Electromyography(EMG) data were analyzed by using root mean square(RMS) and mean power frequency(MPF). Results: The buckwheat shell material showed a higher stability in the cervical spine then the other pillows during spine position. In terms of head pressure distribution, the memory form indicated the lowest pressure at supine position, buckwheat shell material indicated the lowest pressure during lying down to side, and polyester cushion recorded the highest pressure at all postures. Conclusion: The buckwheat shell material has a biomechanical advantage to maintain a healthy neck angle and reduce the pressure on the head, which means the buckwheat shell is a potential material for ergonomic pillow design. The pillow with memory form showed second best biomechanical performance in this study. Application: The shape of the buckwheat shell pillow and the characteristics of materials can be used to design the pillow preventing neck pain and cervical disk problems.

Whey Protein Concentrate, Pullulan, and Trehalose as Thermal Protective Agents for Increasing Viability of Lactobacillus plantarum Starter by Spray Drying

  • Sun, Haiyue;Hua, Xiaoman;Zhang, Minghao;Wang, Yu;Chen, Yiying;Zhang, Jing;Wang, Chao;Wang, Yuhua
    • 한국축산식품학회지
    • /
    • 제40권1호
    • /
    • pp.118-131
    • /
    • 2020
  • It is necessary to add protective agents for protecting the probiotic viability in the preparation process of probiotics starter. In this study, we used whey protein concentrate (WPC), pullulan, trehalose, and sodium glutamate as the protective agent and optimized the proportion of protective agent and spray-drying parameters to achieve the best protective effect on Lactobacillus plantarum. Moreover, the viable counts of L. plantarum in starter stored at different temperatures (-20℃, 4℃, and 25℃) for 360 days were determined. According to response surface method (RSM), the optimal proportion of protective agent was 24.6 g/L WPC, 18.8 g/L pullulan, 16.7 g/L trehalose and 39.3 g/L sodium glutamate. The optimum spray-drying parameters were the ratio of bacteria to protective agents 3:1 (v: v), the feed flow rate 240 mL/h, and the inlet air temperature 115℃ through orthogonal test. Based on the above results, the viable counts of L. plantarum was 12.22±0.27 Log CFU/g and the survival rate arrived at 85.12%. The viable counts of L. plantarum stored at -20℃ was more than 1010 CFU/g after 200 days.

시뮬레이션과 메타모델을 이용한 자동물류센터 설계 최적화 (A Study for Design Optimization of an Automated Distribution Center using the Simulation and Metamodel)

  • 강정윤;이홍철;엄인섭
    • 한국시뮬레이션학회논문지
    • /
    • 제15권3호
    • /
    • pp.103-114
    • /
    • 2006
  • 최근의 자동물류센터는 자동창고(ASRS)와 자동주행대차(AGV)를 중심으로 각종 컨베이어시스템과 운반장치 등으로 구성되면서 매우 복잡한 시스템 형태를 갖게 되었다. 이러한 시스템의 복잡성에 기인하여 시스템 설계과정에서의 정확한 운영 수행도 파악을 위해서는 많은 종류의 설계변수들이 고려되어야 한다. 물류센터 설계에서 고려해야할 일반적인 설계 변수로는 보관설비 및 운반설비의 사양과 여러 가지 시스템 운영 규칙, 보관영역이나 보관물의 형태 등이 있다. 이 논문에서는 자동화물류센터에 대하여 시뮬레이션 실험과 반응표면모델을 이용하여 메타모델을 만들고 이를 통하여 설계변수들을 최적화하는 효율적인 방법에 대하여 소개 하고자 한다. 정확하게 정의된 시뮬레이션 기반의 메타모델은 시스템 함수의 근사적 표현으로서 수리적 계산을 통해 신속한 설계변수 최적화를 가능하게 한다. 이 논문에서 제시한 접근 방법은 자동물류센터와 같은 복잡한 물류 시스템의 설계 단계에서 시뮬레이션의 설계 참여도를 극대화시키고 최종 설계의 정확도를 향상시키는데 기여 할 것이다.

  • PDF

Ni-MH 2차 전지의 상온 및 저온 전극특성 최적화를 위한 첨가제 및 전해질 설계 (Design of Additives and Electrolyte for Optimization of Electrode Characteristics of Ni-MH Secondary Battery at Room and Low Temperatures)

  • 양동철;박충년;박찬진;최전;심종수;장민호
    • 한국수소및신에너지학회논문집
    • /
    • 제18권4호
    • /
    • pp.365-373
    • /
    • 2007
  • We optimized the compositions of electrolyte and additives for anode in Ni-MH battery to improve the electrode characteristics at ambient and low temperatures using response surface method(RSM). Among various additives for anode, PTFE exhibited the greatest influence on the discharge capacity of the anode. Through response optimization process, we found the optimum composition of the additives to exhibit the greatest discharge capacity. When the amount of additives was too small, the anode was degraded with time due to the low binding strength among alloy powders and the resultant separation of powders from the current collector. In contrast, the addition of large amount of the additives increased in the resistance of the electrode. In addition, the discharge capacity of the anode at $-18^{\circ}C$ increased with decreasing the concentration of KOH, NaOH and LiOH in design range of electrolyte. The resistance and viscosity of electrolyte appear to affect the discharge capacity of the anode at low temperature.

Enhanced Production of Cellulase-Free Thermoactive Xylanase Using Corncob by a Black Yeast, Aureobasidium pullulans CBS 135684

  • Bankeeree, Wichanee;Lotrakul, Pongtharin;Prasongsuk, Sehanat;Kim, Seung Wook;Punnapayak, Hunsa
    • Korean Chemical Engineering Research
    • /
    • 제54권6호
    • /
    • pp.822-829
    • /
    • 2016
  • Our aim was to optimize the production of cellulase-free thermoactive xylanase by Aureobasidium pullulans CBS 135684 with statistical methodology based on experimental designs. Among eleven variables, the nutrient sources that had significant effect on xylanase production were corncob, $(NH_4)_2SO_4$, xylose, $KH_2PO_4$ and tween 80, identified by the initial screening method of Plackett-Burman. The optimum concentrations of these five components were subsequently investigated using response surface methodology. The optimal concentrations ($g{\cdot}l^{-1}$) for maximum production of xylanase were corncob, 39.0; $(NH_4)_2SO_4$, 3.0; xylose, 1.8; $KH_2PO_4$ 1.4; and tween 80, 1.4, respectively. An improved xylanase yield of $8.74{\pm}0.84U{\cdot}ml^{-1}$ was obtained with optimized medium which is 2.1-fold higher production than previously obtained results ($4.10{\pm}0.10U{\cdot}ml^{-1}$) after 48 h of cultivation. In addition, the xylanase production under optimal condition reached $10.09{\pm}0.27U{\cdot}ml^{-1}$ after 72 h of cultivation.

Optimized Lactic Acid Fermentation of Soybean Curd Residue (Biji)

  • Baek, Joseph;Kim, Chan-Shick;Lee, Sam-Pin
    • Preventive Nutrition and Food Science
    • /
    • 제7권4호
    • /
    • pp.397-404
    • /
    • 2002
  • Soybean curd residue (SCR) was fermented by lactic acid bacteria, Lactobacillus rhamnosus LS and Entercoccus faecium LL, isolated from SCR. The pH, titratable acidify and viable cell counts were determined from the fermented SCR to evaluate the lactic acid production and growth of lactic acid bacteria. Optimal amounts of pretense enzyme and glucose, and ideal fermentation time for SCR fermentation were estimated by response surface methodology (RSM). Raw SCR fermented by indigenous microorganisms had 0.78 % titratable acidity, The acid production in SCR fermented by L. rhamnosus LS was greatly enhanced by the addition of glucose and lactose. However only glucose increased acid production by Ent. faecium LL. The proof test of SCR fermentation demonstrated that similar results for titratable acidity, tyrosine content and viable cell counts to that predicted could be obtained by the at optimized fermentation conditions. In the presence of 0.029 % (w/w) pretense enzyme and 0.9% (w/w) glucose, the SCR fermented by Ent. faecium LL showed 1.07% (w/v) of titratable acidity, 1.02 mg% tyrosine content and 2$\times$10$^{9}$ (cfu/g) of viable cell counts. With the SCR fortified with 0.033% pretense enzyme and 1.7% glucose, L. rhamnosus LS showed 1.8% (w/v) of titratable acidity, 0.92 mg% of tyrosine content and 2$\times$10$^{9}$ (cfu/g) of viable cell counts.

Optimization of Growth Medium and Fermentation Conditions for the Production of Laccase3 from Cryphonectria parasitica Using Recombinant Saccharomyces cerevisiae

  • Jeong, Yong-Seob;Sob, Kum-Kang;Lee, Ju-Hee;Kim, Jung-Mi;Chun, Gie-Taek;Chun, Jeesun;Kim, Dae-Hyuk
    • Mycobiology
    • /
    • 제47권4호
    • /
    • pp.512-520
    • /
    • 2019
  • Statistical experimental methods were used to optimize the medium for mass production of a novel laccase3 (Lac3) by recombinant Saccharomyces cerevisiae TYEGLAC3-1. The basic medium was composed of glucose, casamino acids, yeast nitrogen base without amino acids (YNB w/o AA), tryptophan, and adenine. A one-factor-at-a-time approach followed by the fractional factorial design identified galactose, glutamic acid, and ammonium sulfate, as significant carbon, nitrogen, and mineral sources, respectively. The steepest ascent method and response surface methodology (RSM) determined that the optimal medium was (g/L): galactose, 19.16; glutamic acid, 5.0; and YNB w/o AA, 10.46. In this medium, the Lac3 activity (277.04 mU/mL) was 13.5 times higher than that of the basic medium (20.50 mU/mL). The effect of temperature, pH, agitation (rpm), and aeration (vvm) was further examined in a batch fermenter. The best Lac3 activity was 1176.04 mU/mL at 25 ℃, pH 3.5, 100 rpm, and 1 vvm in batch culture.

Optimization and kinetic modeling for bioconversion of cheese whey to Ganoderma lucidum in batch fermentations

  • 송민경;이환영;황석환
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2002년도 생물공학의 동향 (X)
    • /
    • pp.381-384
    • /
    • 2002
  • Response surface methodology (RSM) was successfully applied to optimize for the production of Ganoderma lucidum in batch fermentations using the whey (40,000 mg latose/L) as substrate. This study was performed according to the central composite design (CCD) with respect to pH and temperature, where the designed intervals were 3.3$22.9^{\circ}C$$37.1^{\circ}C$, respectively. A second-order factorial design of the experiments was used to build empirical models providing a quantitative interpretation of the relationships between the two variables. The optimum conditions to maximize the production of G. lucidum were pH 4.2 and $28.3^{\circ}C$. At optimum conditions, the mycelial dry weight (MDW) and residual soluble COD (SCOD) were simultaneously used to evaluate the biokinetic coefficients assocoated with substrate inhibition model by nonlinear least squares method with 95% confidence interval. The. maximum microbial growth rates (${\mu}m$), half saturation coefficient ($K_s$), and the inhibition substrate concentration ($K_{is}$) were determined to be 0.095 l/hr, 128,000 mg SCOD/L and 49,000 mg SCOD/L, respectively. And the microbial yield coefficient (Y), biomass decay rate coefficient ($K_d$), and the maintenance energy coefficient ($m_s$) were determined to be 0.37 mg MDW/mg SCOD, 0.001 1/hr, and 0.0015 1/hr, respectively.

  • PDF

Poly(L-Lactide)-Degrading Enzyme Production by Actinomadura keratinilytica T16-1 in 3 L Airlift Bioreactor and Its Degradation Ability for Biological Recycle

  • Sukkhum, Sukhumaporn;Tokuyama, Shinji;Kitpreechavanich, Vichien
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권1호
    • /
    • pp.92-99
    • /
    • 2012
  • The optimal physical factors affecting enzyme production in an airlift fermenter have not been studied so far. Therefore, the physical parameters such as aeration rate, pH, and temperature affecting PLA-degrading enzyme production by Actinomadura keratinilytica strain T16-1 in a 3 l airlift fermenter were investigated. The response surface methodology (RSM) was used to optimize PLA-degrading enzyme production by implementing the central composite design. The optimal conditions for higher production of PLA-degrading enzyme were aeration rate of 0.43 vvm, pH of 6.85, and temperature at $46^{\circ}C$. Under these conditions, the model predicted a PLA-degrading activity of 254 U/ml. Verification of the optimization showed that PLA-degrading enzyme production of 257 U/ml was observed after 3 days cultivation under the optimal conditions in a 3 l airlift fermenter. The production under the optimized condition in the airlift fermenter was higher than un-optimized condition by 1.7 folds and 12 folds with un-optimized medium or condition in shake flasks. This is the first report on the optimization of environmental conditions for improvement of PLA-degrading enzyme production in a 3 l airlift fermenter by using a statistical analysis method. Moreover, the crude PLA-degrading enzyme could be adsorbed to the substrate and degraded PLA powder to produce lactic acid as degradation products. Therefore, this incident indicates that PLA-degrading enzyme produced by Actinomadura keratinilytica NBRC 104111 strain T16-1 has a potential to degrade PLA to lactic acid as a monomer and can be used for the recycle of PLA polymer.

Optimized Medium Improves Expression and Secretion of Extremely Thermostable Bacterial Xylanase, XynB, in Kluyveromyces lactis

  • Yin, Tie;Miao, Li-Li;Guan, Fei-Fei;Wang, Gui-Li;Peng, Qing;Li, Bing-Xue;Guan, Guo-Hua;Li, Ying
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권11호
    • /
    • pp.1471-1480
    • /
    • 2010
  • An extremely thermostable xylanase gene, xynB, from the hyperthermophilic bacterium Thermotoga maritima MSB8 was successful expressed in Kluyveromyces lactis. The response surface methodology (RSM) was also applied to optimize the medium components for the production of XynB secreted by the recombinant K. lactis. The secretion level (102 mg/l) and enzyme activity (49 U/ml) of XynB in the optimized medium (yeast extract, lactose, and urea; YLU) were much higher than those (56 mg/l, 16 U/ml) in the original medium (yeast extract, lactose, and peptone; YLP). The secretory efficiency of mature XynB was also improved when using the YLU medium. When the mRNA levels of 13 characterized secretion-related genes in the K. lactis cultured in YLP and YLU were detected using a semiquantitative RT-PCR method, the unfolded protein response (UPR)-related genes, including ero1, hac1, and kar2, were found to be up-regulated in the K. lactis cultured in YLU. Therefore, the nutrient ingredients, especially the nitrogen source, were shown to have a significant influence on the XynB secretory efficiency of the host K. lactis.