• Title/Summary/Keyword: rsm method

Search Result 501, Processing Time 0.021 seconds

Optimization of Sesame oil Extraction from Sesame cake using Supercritical Fluid $CO_{2}$ (초임계유체 $CO_{2}$를 이용한 참깨박 중 참기름 추출의 최적화)

  • Kim, Seong-Ju;Kim, Young-Jong;Chang, Kyu-Seob
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.3
    • /
    • pp.431-437
    • /
    • 2005
  • Overall experiments were planned by central composite design, and results were analyzed by response surface methodology (RSM) to determine effects of three independent variables, temperature ($X_{1}$), extraction time ($X_{3}$), and pressure ($X_{3}$), on yield of sesame oil extract (Y). Regression equation model optimized by response surface analysis was: Y (sesame oil) = $-3.89+0.07X_{1}+0.03X_{2}+0.0006X_{3}-0.0007X_{1}^{2}-0.0002X_{2}X_{1}-0.00008X_{2}^{2}+0.000004X_{3}X_{1}+0.0000009X_{3}X_{2}-0.00000009X_{3}^{2}$. According to RSM analysis, optimum extracting conditions of temperature, time, and pressure were $45.89^{\circ}C$, 131.89 min, and 34228.41 kPa, respectively, and statistical maximum yield of sesame oil was 96.27%. Fatty acid composition of sesame oil showed sesame oil extracted by Supereritical Fluid $CO_{2}$ contained lower levels of palmitic, stcaric, and oleic acids and higher levels or palmitoleic and linoleic acids than commercial sesame oil. Commercial and extracted sesame oils were analyzed by electronic nose composed of 12 different metal oxide sensors. Obtained data were interpreted by statistical method of MANOVA. Sensitivities of sensors from electronic nose were analysed by principal component analysis. Proportion of first principal component was 99.92%. All sesame oils showed different odors (p < 0.05).

Using Support Vector Regression for Optimization of Black-box Objective Functions (서포트 벡터 회귀를 이용한 블랙-박스 함수의 최적화)

  • Kwak, Min-Jung;Yoon, Min
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.1
    • /
    • pp.125-136
    • /
    • 2008
  • In many practical engineering design problems, the form of objective functions is not given explicitly in terms of design variables. Given the value of design variables, under this circumstance, the value of objective functions is obtained by real/computational experiments such as structural analysis, fluid mechanic analysis, thermodynamic analysis, and so on. These experiments are, in general, considerably expensive. In order to make the number of these experiments as few as possible, optimization is performed in parallel with predicting the form of objective functions. Response Surface Methods (RSM) are well known along this approach. This paper suggests to apply Support Vector Machines (SVM) for predicting the objective functions. One of most important tasks in this approach is to allocate sample data moderately in order to make the number of experiments as small as possible. It will be shown that the information of support vector can be used effectively to this aim. The effectiveness of our suggested method will be shown through numerical example which is well known in design of engineering.

Optimization of coagulation conditions for pretreatment of microfiltration process using response surface methodology

  • Jung, Jungwoo;Kim, Yoon-Jin;Park, Youn-Jong;Lee, Sangho;Kim, Dong-ha
    • Environmental Engineering Research
    • /
    • v.20 no.3
    • /
    • pp.223-229
    • /
    • 2015
  • The application of coagulation for feed water pretreatment prior to microfiltration (MF) process has been widely adopted to alleviate fouling due to particles and organic matters in feed water. However, the efficiency of coagulation pretreatment for MF is sensitive to its operation conditions such as pH and coagulant dose. Moreover, the optimum coagulation condition for MF process is different from that for rapid sand filtration in conventional drinking water treatment. In this study, the use of response surface methodology (RSM) was attempted to determine coagulation conditions optimized for pretreatment of MF. The center-united experimental design was used to quantify the effects of coagulant dose and pH on the control of fouling control as well as the removal organic matters. A MF membrane (SDI Samsung, Korea) made of polyvinylidene fluoride (PVDF) was used for the filtration experiments. Poly aluminum chloride (PAC) was used as the coagulant and a series of jar tests were conducted under various conditions. The flux was $90L/m^2-h$ and the fouling rate were calculated in each condition. As a result of this study, an empirical model was derived to explore the optimized conditions for coagulant dose and pH for minimization of the fouling rate. This model also allowed the prediction of the efficiency of the coagulation efficiency. The experimental results were in good agreement with the predictions, suggesting that RSM has potential as a practical method for modeling the coagulation pretreatment for MF.

Development of a predictive model of the limiting current density of an electrodialysis process using response surface methodology

  • Ali, Mourad Ben Sik;Hamrouni, Bechir
    • Membrane and Water Treatment
    • /
    • v.7 no.2
    • /
    • pp.127-141
    • /
    • 2016
  • Electrodialysis (ED) is known to be a useful membrane process for desalination, concentration, separation, and purification in many fields. In this process, it is desirable to work at high current density in order to achieve fast desalination with the lowest possible effective membrane area. In practice, however, operating currents are restricted by the occurrence of concentration polarization phenomena. Many studies showed the occurrence of a limiting current density (LCD). The limiting current density in the electrodialysis process is an important parameter which determines the electrical resistance and the current utilization. Therefore, its reliable determination is required for designing an efficient electrodialysis plant. The purpose of this study is the development of a predictive model of the limiting current density in an electrodialysis process using response surface methodology (RSM). A two-factor central composite design (CCD) of RSM was used to analyze the effect of operation conditions (the initial salt concentration (C) and the linear flow velocity of solution to be treated (u)) on the limiting current density and to establish a regression model. All experiments were carried out on synthetic brackish water solutions using a laboratory scale electrodialysis cell. The limiting current density for each experiment was determined using the Cowan-Brown method. A suitable regression model for predicting LCD within the ranges of variables used was developed based on experimental results. The proposed mathematical quadratic model was simple. Its quality was evaluated by regression analysis and by the Analysis Of Variance, popularly known as the ANOVA.

Optimization of Processing of Surimi Gel from Unmarketable Cultured Bastard Halibut Paralichthys olivaceus using RSM (RSM을 이용한 비규격 제주산 양식 넙치(Paralichthys olivaceus)로부터 연제품의 가공 조건 최적화)

  • Shin, Jun-Ho;Park, Kwon-Hyun;Lee, Ji-Sun;Kim, Hyung-Jun;Lee, Dong-Ho;Heu, Min-Soo;Jeon, You-Jin;Kim, Jin-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.44 no.5
    • /
    • pp.435-442
    • /
    • 2011
  • This study was conducted to optimize the processing of high quality surimi gel from unmarketable cultured bastard halibut Paralichthys olivaceus. According to endogenous enzyme activity and processing optimization, high quality surimi gel from unmarketable cultured bastard halibut was prepared by mixing 3.0% (w/w) salt, 2.4% (w/w) starch, 5.0% (w/w) egg white and 4.8% (w/w) ice water in a Stephan mixer, set at $5^{\circ}C$ for 24 h, followed by boiling for 30 min, and finally cooling for 30 min. The strength of the surimi gel from unmarketable cultured bastard halibut prepared by the above processing method was $1,257\;g{\times}cm$, which was 33% higher than that of a commercial surimi gel from Alaska pollock, grade SA.

Optimization of Submerged Culture Conditions for the Production of Ginseng Root Using Response Surface Method (반응표면분석법을 이용한 인삼 Root 액체배양조건의 최적화)

  • 오훈일;장은정;이시경;박동기
    • Journal of Ginseng Research
    • /
    • v.24 no.2
    • /
    • pp.58-63
    • /
    • 2000
  • To develop the production of ginseng root using plant tissue culture technology, submerged culture conditions were optimized by means of the fractional factorial design with 4 factors and 3 levels by a RSM computer program. The ginseng (Panax ginseng C. A. Meyer) roots induced by plant growth regulators were cultured on SH medium and the effects of various pH of medium, sucrose concentration, nitrogen concentration and phosphate concentration on fresh weight of the ginseng root were investigated. The fresh weight of ginseng root increased with a decrease in nitrogen concentration and fresh weight of ginseng root varied from 1.00 to 2.33g under various conditions. The optimum pH of medium and sucrose concentration determined by a partial differentiation of the model equation, nitrogen and phosphate concentration were pH 5.6, sucrose 3.8%, nitrogen 50 mg/L and phosphate 80.7 mg/L, respectively. Under these conditions, the predicted growth of ginseng root was estimated to be 2.36g.

  • PDF

Optimization of Medium for Protease Production by Enterobacteriaceae sp. PAMC 25617 by Response Surface Methodology (반응표면분석법을 통한 Enterobacteriaceae sp. PAMC 25617의 protease 생산배지 최적화)

  • Kim, Hyun-do;Yun, Chul-Won;Choi, Jong-il;Han, Se Jong
    • Korean Chemical Engineering Research
    • /
    • v.53 no.4
    • /
    • pp.524-529
    • /
    • 2015
  • This study was conducted to optimize the medium composition for cold-adaptive protease production of Enterobacteriaceae sp. by response surface methodology (RSM). Yeast extract, and TritonX-100 were identified as the significant factors affecting protease from one-factor-at-a-time method. RSM studies for optimizing protease production of Enterobacteriaceae sp. have been carried out for three parameters including yeast extract concentration, TritonX-100 concentration, and culture pH. These significant factors were optimized as 6.690 g/L yeast extract, 0.018 g/L Triton$^{TM}$ X-10, and pH 6.677. The experimentally obtained protease activity was 8.03 U /L, and it became 1.5-fold increase before optimization.

Optimization of Medium Composition for Biomass Production of Lactobacillus plantarum 200655 Using Response Surface Methodology

  • Choi, Ga-Hyun;Lee, Na-Kyoung;Paik, Hyun-Dong
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.5
    • /
    • pp.717-725
    • /
    • 2021
  • This study aimed to optimize medium composition and culture conditions for enhancing the biomass of Lactobacillus plantarum 200655 using statistical methods. The one-factor-at-a-time (OFAT) method was used to screen the six carbon sources (glucose, sucrose, maltose, fructose, lactose, and galactose) and six nitrogen sources (peptone, tryptone, soytone, yeast extract, beef extract, and malt extract). Based on the OFAT results, six factors were selected for the Plackett-Burman design (PBD) to evaluate whether the variables had significant effects on the biomass. Maltose, yeast extract, and soytone were assessed as critical factors and therefore applied to response surface methodology (RSM). The optimal medium composition by RSM was composed of 31.29 g/l maltose, 30.27 g/l yeast extract, 39.43 g/l soytone, 5 g/l sodium acetate, 2 g/l K2HPO4, 1 g/l Tween 80, 0.1 g/l MgSO4·7H2O, and 0.05 g/l MnSO4·H2O, and the maximum biomass was predicted to be 3.951 g/l. Under the optimized medium, the biomass of L. plantarum 200655 was 3.845 g/l, which was similar to the predicted value and 1.58-fold higher than that of the unoptimized medium (2.429 g/l). Furthermore, the biomass increased to 4.505 g/l under optimized cultivation conditions. For lab-scale bioreactor validation, batch fermentation was conducted with a 5-L bioreactor containing 3.5 L of optimized medium. As a result, the highest yield of biomass (5.866 g/l) was obtained after 18 h of incubation at 30℃, pH 6.5, and 200 rpm. In conclusion, mass production by L. plantarum 200655 could be enhanced to obtain higher yields than that in MRS medium

Optimization and modification of PVDF dual-layer hollow fiber membrane for direct contact membrane distillation; application of response surface methodology and morphology study

  • Bahrami, Mehdi;Karimi-Sabet, Javad;Hatamnejad, Ali;Dastbaz, Abolfazl;Moosavian, Mohammad Ali
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.11
    • /
    • pp.2241-2255
    • /
    • 2018
  • RSM methodology was applied to present mathematical models for the fabrication of polyvinylidene fluoride (PVDF) dual-layer hollow fibers in membrane distillation process. The design of experiments was used to investigate three main parameters in terms of polymer concentration in both outer and inner layers and the flow rate of dope solutions by the Box-Behnken method. According to obtained results, the optimization was done to present the proper membrane with desirable properties. The characteristics of the optimized membrane (named HF-O) suggested by the Box-Behnken (at the predicted point) showed that the proposed models are strongly valid. Then, a morphology study was done to modify the fiber by a combination of three types of a structure such as macro-void, sponge-like and sharp finger-like. It also improved the hydrophobicity of outer surface from 87 to $113^{\circ}$ and the mean pore size of the inner surface from 108.12 to 560.14 nm. The DCMD flux of modified fiber (named HF-M) enhanced 62% more than HF-O when it was fabricated by considering both of RSM and morphology study results. Finally, HF-M was conducted for long-term desalination process up to 100 hr and showed stable flux and wetting resistance during the test. These stepwise approaches are proposed to easily predict the main properties of PVDF dual-layer hollow fibers by valid models and to effectively modify its structure.

Optimization of Ultrasound-Assisted Pretreatment for Accelerating Rehydration of Adzuki Bean (Vigna angularis)

  • Hyengseop Kim;Changgeun Lee;Eunghee Kim;Youngje Jo;Jiyoon Park;Choongjin Ban;Seokwon Lim
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.4
    • /
    • pp.846-853
    • /
    • 2024
  • Adzuki bean (Vigna angularis), which provides plant-based proteins and functional substances, requires a long soaking time during processing, which limits its usefulness to industries and consumers. To improve this, ultrasonic treatment using high pressure and shear force was judged to be an appropriate pretreatment method. This study aimed to determine the optimal conditions of ultrasound treatment for the improved hydration of adzuki beans using the response surface methodology (RSM). Independent variables chosen to regulate the hydration process of the adzuki beans were the soaking time (2-14 h, X1), treatment intensity (150-750 W, X2), and treatment time (1-10 min, X3). Dependent variables chosen to assess the differences in the beans post-immersion were moisture content, water activity, and hardness. The optimal conditions for treatment deduced through RSM were a soaking time of 12.9 h, treatment intensity of 600 W, and treatment time of 8.65 min. In this optimal condition, the values predicted for the dependent variables were a moisture content of 58.32%, water activity of 0.9979 aw, and hardness of 14.63 N. Upon experimentation, the results obtained were a moisture content of 58.28 ± 0.56%, water activity of 0.9885 ± 0.0040 aw, and hardness of 13.01 ± 2.82 g, confirming results similar to the predicted values. Proper ultrasound treatment caused cracks in the hilum, which greatly affects the water absorption of adzuki beans, accelerating the rate of hydration. These results are expected to help determine economically efficient processing conditions for specific purposes, in addition to solving industrial problems associated with the low hydration rate of adzuki beans.