Browse > Article
http://dx.doi.org/10.1007/s11814-018-0038-4

Optimization and modification of PVDF dual-layer hollow fiber membrane for direct contact membrane distillation; application of response surface methodology and morphology study  

Bahrami, Mehdi (Department of Chemical Engineering, Faculty of Engineering, University of Tehran)
Karimi-Sabet, Javad (Material and Nuclear Fuel Research School (MNFRS), Nuclear Science and Technology Research Institute)
Hatamnejad, Ali (Department of Chemical Engineering, Faculty of Engineering, University of Tehran)
Dastbaz, Abolfazl (Department of Chemical Engineering, Faculty of Engineering, University of Tehran)
Moosavian, Mohammad Ali (Department of Chemical Engineering, Faculty of Engineering, University of Tehran)
Publication Information
Korean Journal of Chemical Engineering / v.35, no.11, 2018 , pp. 2241-2255 More about this Journal
Abstract
RSM methodology was applied to present mathematical models for the fabrication of polyvinylidene fluoride (PVDF) dual-layer hollow fibers in membrane distillation process. The design of experiments was used to investigate three main parameters in terms of polymer concentration in both outer and inner layers and the flow rate of dope solutions by the Box-Behnken method. According to obtained results, the optimization was done to present the proper membrane with desirable properties. The characteristics of the optimized membrane (named HF-O) suggested by the Box-Behnken (at the predicted point) showed that the proposed models are strongly valid. Then, a morphology study was done to modify the fiber by a combination of three types of a structure such as macro-void, sponge-like and sharp finger-like. It also improved the hydrophobicity of outer surface from 87 to $113^{\circ}$ and the mean pore size of the inner surface from 108.12 to 560.14 nm. The DCMD flux of modified fiber (named HF-M) enhanced 62% more than HF-O when it was fabricated by considering both of RSM and morphology study results. Finally, HF-M was conducted for long-term desalination process up to 100 hr and showed stable flux and wetting resistance during the test. These stepwise approaches are proposed to easily predict the main properties of PVDF dual-layer hollow fibers by valid models and to effectively modify its structure.
Keywords
Dual-layer Hollow Fiber Membranes; Polyvinylidene Fluoride (PVDF); Response Surface Methodology; Morphology Study; Membrane Distillation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Khayet, C. Y. Feng and K. C. Khulbe, Desalination, 148, 321 (2002).   DOI
2 Y. Santoso, T. S. Chung and K. Y. Wang, J. Membr. Sci., 282, 383 (2006).   DOI
3 N. Peng, T. S. Chung and K. Y. Wang, J. Membr. Sci., 318, 363 (2008).   DOI
4 M. Gryta and M. Barancewicz, J. Membr. Sci., 358, 158 (2010).   DOI
5 S. Bonyadi and T. S. Chung, J. Membr. Sci., 331, 66 (2009).   DOI
6 R. F. Service, Desalination freshens up, Science, New York (2006).
7 I. C. Escobar, Sustainability Sci. Eng., 2, 389 (2010).
8 K. W. Lawson and D. R. Lloyd, J. Membr. Sci., 124, 1 (1997).   DOI
9 G. Amy, N. Ghaffour and Z. Li, Desalination, 401, 16 (2017).   DOI
10 Z. Ding, L. Liu and M. El-Bourawi, Desalination, 172, 27 (2005).   DOI
11 E.Curcio and E. Drioli, Sep. Purif. Reviews, 34, 35 (2005).   DOI
12 M. Khayet, Adv. Colloid Interface Sci., 164, 56 (2011).   DOI
13 D. Gonzalez, J. Amigo and F. Suarez, Renew. Sust. Energy Rev., 80, 238 (2017).   DOI
14 A. K. An, J. Guo and E. Lee, J. Membr. Sci., 525, 57 (2017).   DOI
15 R. Schofield, A. Fane and C. Fell, J. Membr. Sci., 33, 299 (1987).   DOI
16 E. Karbasi, J. Karimi-Sabet and J. Mohammadi-Rovshandeh, Chem. Eng. J., 322, 667 (2017).   DOI
17 M. El-Bourawi, Z. Ding and R. Ma, J. Membr. Sci., 285, 4 (2006).   DOI
18 L. Eykens, K. De Sitter and C. Dotremont, Sep. Purif. Technol., 182, 36 (2017).   DOI
19 R. Moradi, S. M. Monfared and Y. Amini, Korean J. Chem. Eng., 33, 2160 (2016).   DOI
20 J. Zahirifar, J. Karimi-Sabet and M. A. Moosavian, Desalination, 428, 227 (2018).   DOI
21 A. Khalifa, H. Ahmad and M. Antar, Desalination, 404, 22 (2017).   DOI
22 A. Burgoyne and M. Vahdati, Sep. Sci. Technol., 35, 1257 (2000).   DOI
23 F. Lagana, G. Barbieri and E. Drioli, J. Membr. Sci., 166, 1 (2000).   DOI
24 B. Ashoor, S. Mansour and A. Giwa, Desalination, 398, 222 (2016).   DOI
25 F. Suarez, S. W. Tyler and A. E. Childress, Water Res., 44, 4601 (2010).   DOI
26 P. Wang, M. M. Teoh and T. S. Chung, Water Res., 45, 5489 (2011).   DOI
27 K. Y. Wang, S. W. Foo and T. S. Chung, Ind. Eng. Chem. Res., 48, 4474 (2009).   DOI
28 M. M. Teoh, T. S. Chung and Y. S. Yeo, Chem. Eng. J., 171, 684 (2011).   DOI
29 J. Phattaranawik, R. Jiraratananon and A. Fane, J. Membr. Sci., 215, 75 (2003).   DOI
30 Z. Wang and S. Lin, Water Res., 112, 38 (2017).   DOI
31 M. Khayet and T. Matsuura, Ind. Eng. Chem. Res., 40, 5710 (2001).   DOI
32 M. Khayet, J. Mengual and T. Matsuura, J. Membr. Sci., 252, 101 (2005).   DOI
33 F. Liu, N. A. Hashim and Y. Liu, J. Membr. Sci., 375, 1 (2011).   DOI
34 R. Moradi, J. Karimi-Sabet and M. Shariaty-niassar, Korean J. Chem. Eng., 33, 2953 (2016).   DOI
35 C. F. Wan, T. Yang and G. G. Lipscomb, J. Membr. Sci., 538, 96 (2017).   DOI
36 K. Schneider, W. Holz and R. Wollbeck, J. Membr. Sci., 39, 25 (1998).
37 L. Song, B. Li and K. Sirkar, Ind. Eng. Chem. Res., 46, 2307 (2007).   DOI
38 X. Yang, R. Wang and L. Shi, J. Membr. Sci., 369, 437 (2011).   DOI
39 X. Li, Y. Mo and J. Li, J. Membr. Sci., 528, 187 (2017).   DOI
40 P. Van de Witte, P. J. Dijkstra and J. W. A. Van den berg, J. Membr. Sci., 117, 1 (1996).   DOI
41 F. Edwie, M. M. Teoh and T. S. Chung, Chem. Eng. Sci., 68, 567 (2012).   DOI
42 K. Y. Wang, T. S. Chung and M. Gryta, Chem. Eng. Sci., 63, 2587 (2008).   DOI
43 S. Bonyadi and T. S. Chung, J. Membr. Sci., 306, 134 (2007).   DOI
44 F. Edwie and T. S. Chung, J. Membr. Sci., 421, 111 (2012).
45 M. Su, M. M. Teoh and K. Y. Wang, J. Membr. Sci., 364, 278 (2010).   DOI
46 J. Zhu, L. Jiang and T. Matsuura, Chem. Eng. Sci., 137, 79 (2015).   DOI
47 J. Zuo, T. S. Chung and G. S. O’Brien, J. Membr. Sci., 523, 103 (2017).   DOI
48 X. Feng, L. Y. Jiang and T. Matsuura, Desalination, 401, 53 (2017).   DOI
49 A. Dastbaz, J. Karimi-sabet and H. Ahadi, Desalination, 424, 62 (2017).   DOI
50 M. Khayet and T. Matsuura, Membrane distillation: principles and applications, Elsevier (2011).
51 K. Ravikumar, K. Pakshirajan and T. Swaminathan, Chem. Eng. J., 105, 131 (2005).   DOI
52 D. Cheng, W. Gong and N. Li, Desalination, 394, 108 (2016).   DOI
53 M. Khayet, C. Cojocaru and M. D. C. Garcia-Payo, J. Membr. Sci., 35, 234 (2010).
54 M. Khayet, C. Cojocaru and M. Essalhi, Desalination, 287, 146 (2012).   DOI
55 Z. W. Song and L. Y. Jiang, Chem. Eng. Sci., 101, 130 (2013).   DOI
56 L. Shi, R. Wang and Y. Cao, J. Membr. Sci., 305, 215 (2007).   DOI
57 J. S. Kwak, Int. J. Machine Tools and Manufacture, 45, 327 (2005).   DOI
58 N. Aslan and Y. Cebeci, Fuel, 86, 90 (2007).   DOI
59 A. Hadi, J. Karimi-Sabet and M. A. Moosavian, J. Supercrit. Fluids, 107, 92 (2016).   DOI
60 M. A. Bezerra, R. E. Santelli and E. P. Oliveira, Talanta, 76, 965 (2008).   DOI
61 A. Zaherzadeh, J. Karimi-Sabet and M. A. Moosavian, J. Supercrit. Fluids, 103, 105 (2015).   DOI
62 P. Rana-Madaria, M. Nagarajan and C. Rajagopal, Ind. Eng. Chem. Res., 44, 6549 (2005).   DOI
63 S. Deshmukh and K. Li, J. Membr. Sci., 150, 75 (1998).   DOI
64 D. Wang, K. Li and W. Teo, J. Membr. Sci., 163, 211 (1999).   DOI
65 B. Wu, K. Li and W. Teo, J. Appl. Polym. Sci., 106, 1482 (2007).   DOI
66 J. Qin and T. S. Chung, J. Membr. Sci., 157, 35 (1999).   DOI
67 J. Qin, J. Gu and T. S. Chung, J. Membr. Sci., 182, 57 (2001).   DOI