• Title/Summary/Keyword: rpm

Search Result 3,995, Processing Time 0.035 seconds

Rotordynamic Model Development with Consideration of Rotor Core Laminations for 2.2 kW-Class Squirrel-Cage Type Induction Motors and Influence Investigation of Bearing Clearance (2.2 kW급 유도전동기의 회전자 적층구조를 고려한 회전체 동역학 해석모델 개발 및 베어링 간극의 영향 분석)

  • Park, Jisu;Sim, Kyuho;Lee, Sung-Ho
    • Tribology and Lubricants
    • /
    • v.35 no.3
    • /
    • pp.158-168
    • /
    • 2019
  • This paper presents the investigation of two types of rotordynamic modeling issues for 2.2 kW-class, rated speed of 1,800 rpm, squirrel-cage type induction motors. These issues include the lamination structure of rotor cores, and the radial clearance of ball bearings that support the shaft of the motor. Firstly, we focus on identifying the effects of rotor core lamination on the rotordynamic analysis via a 2D prediction model. The influence of lamination is considered as the change in the elastic modulus of the rotor core, which is determined by a modification factor ranging from 0 to 1.0. The analysis results show that the unbalanced response of the rotor-bearing system significantly varies depending on the value of the modification factor. Through modal testing of the system, the modification factor of 0.079 is proven to be appropriate to consider the effects of lamination. Next, we investigate the influence of ball bearing clearance on the rotordynamic analysis by establishing a bearing analysis model based on Hertz's contact theory. The analysis results indicate that negative clearance greatly changes the bearing static behavior. Rotordynamic analysis using predicted bearing stiffness with various clearances from -0.005 mm to 0.010 mm reveals that variations in clearance result in a slight difference in the displacement of the system up to 18.18. Thus, considering lamination in rotordynamic analysis is necessary as it can cause serious analysis errors in unbalanced response. However, considering the effect of the bearing clearance is optional because of its relatively weak impact.

Analysis of the PTO Driveline Rattle Noise on an Agricultural Tractor (농업용 트랙터 PTO 전동라인의 래틀 소음 분석)

  • Ahn, Da-Vin;Shin, In-Kyung;Han, Hyun-Woo;Son, Gwan-Hee;Park, Young-Jun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.6
    • /
    • pp.45-54
    • /
    • 2019
  • In this study, we analyze the rattle noise of a power takeoff (PTO) driveline and develop a PTO driveline resonance model. We measured the rattle noise of the PTO driveline on the output shaft and, by analyzing the rattle noise in the time domain, we determine that the engine expansion stroke period matches the sound pressure of rattle noise. This finding helped us demonstrate that the rattle noise is caused by the collision between the PTO driving gear and the gear driven by the engine expansion stroke; the torsional vibration caused by this collision is affected by the angular velocity fluctuation of the PTO drive shaft. By measuring the angular velocity of the PTO drive shaft, we confirm that the angular velocity fluctuation of the engine flywheel tends to excessively amplify the PTO drive shaft angular velocity fluctuation. We conclude that the resonance, which occurs when the operating frequency of the engine is close to the natural frequency of the tractor power transmission system, causes the excessive angular velocity fluctuation of the PTO drive shaft. We performed a modal analysis of the PTO driveline resonance and, using the characteristic equation, we show that the resonance occurs when the engine rotation speed is close to 850 rpm, which matches the natural frequency of the PTO driveline.

Syngas/Diesel Dual Fuel Combustion in a Compression Ignition Engine with Different Composition Ratios of Syngas and Compression Ratios (합성가스/디젤 혼소압축착화 엔진의 합성가스 혼합비와 압축비에 따른 연소 및 배출가스 특성)

  • Lee, Junsun;Chung, Tahn;Lee, Yonggyu;Kim, Changup;Oh, Seungmook
    • Journal of ILASS-Korea
    • /
    • v.24 no.1
    • /
    • pp.35-42
    • /
    • 2019
  • Syngas is widely produced by incomplete combustion of coal, water vapor, and air (oxygen) in a high-temperature/high-pressure gasifier through a coal-gasification process for power generation. In this study, a simulation syngas which was mainly composed of $H_2$, CO, $CO_2$, and $N_2$ was fueled with diesel. A modified single cylinder compression ignition (CI) engine is equipped with intake port syngas supply system and mechanical diesel direct injection system for dual fuel combustion. Combustion and emission characteristics of the engine were investigated by applying various syngas composition ratios and compression ratios. Diesel fuel injection timing was optimized to increase indicated thermal efficiency (ITE) at the engine speed 1,800 rpm and part load net indicated mean effective pressure ($IMEP_{net}$) 2 to 5 bar. ITE of the engine increased with the $H_2$ concentration, compression ratio and engine load. With 45% of $H_2$ concentration, compression ratio 17.1 and $IMEP_{net}$ 5 bar, ITE of 41.5% was achieved, which is equivalent to that of only diesel fuel operation.

Improving the Quality of Response Surface Analysis of an Experiment for Coffee-supplemented Milk Beverage: II. Heterogeneous Third-order Models and Multi-response Optimization

  • Rheem, Sungsue;Rheem, Insoo;Oh, Sejong
    • Food Science of Animal Resources
    • /
    • v.39 no.2
    • /
    • pp.222-228
    • /
    • 2019
  • This research was motivated by our encounter with the situation where an optimization was done based on statistically non-significant models having poor fits. Such a situation took place in a research to optimize manufacturing conditions for improving storage stability of coffee-supplemented milk beverage by using response surface methodology, where two responses are $Y_1$=particle size and $Y_2$=zeta-potential, two factors are $F_1$=speed of primary homogenization (rpm) and $F_2$=concentration of emulsifier (%), and the optimization objective is to simultaneously minimize $Y_1$ and maximize $Y_2$. For response surface analysis, practically, the second-order polynomial model is almost solely used. But, there exists the cases in which the second-order model fails to provide a good fit, to which remedies are seldom known to researchers. Thus, as an alternative to a failed second-order model, we present the heterogeneous third-order model, which can be used when the experimental plan is a two-factor central composite design having -1, 0, and 1 as the coded levels of factors. And, for multi-response optimization, we suggest a modified desirability function technique. Using these two methods, we have obtained statistical models with improved fits and multi-response optimization results with the predictions better than those in the previous research. Our predicted optimum combination of conditions is ($F_1$, $F_2$)=(5,000, 0.295), which is different from the previous combination. This research is expected to help improve the quality of response surface analysis in experimental sciences including food science of animal resources.

Remediation of Heavy Metal-Contaminated Soil Within a Military Shooting Range through Physicochemical Treatment (물리화학적 처리를 이용한 군부대 사격장 내 중금속 오염 토양의 정화)

  • Lee, Sang-Woo;Lee, Woo-Chun;Lee, Sang-Hwan;Kim, Soon-Oh
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.5
    • /
    • pp.9-19
    • /
    • 2021
  • This study evaluated the feasibility of combined use of physical separation and soil washing to remediate heavy metals (Pb and Cu) contaminated soil in a military shooting range. The soils were classified into two types based on the level of heavy metal concentrations: a higher contaminated soil (HCS) with Pb and Cu concentrations of 6,243 mg/kg and 407 mg/kg, respectively, and a lower contaminated soil (LCS) with their concentrations of 1,658 mg/kg and 232 mg/kg. Pb level in both soils exceeded the regulatory limit (700 mg/kg), and its concentration generally increased with decreasing soil particle size. However, in some cases, Pb concentrations increased with increasing soil particle size, presumably due to the presence of residues of bullets in the soil matrix. As a pretreatment step, a shaking table was used for physical separation of soil to remove bullet residues while fractionating the contaminated soils into different sizes. The most effective separation and fractionation were achieved at vibration velocity of 296 rpm/min, the table slope of 7.0°, and the separating water flow rate of 23 L/min. The efficiency of ensuing soil washing process for LCS was maximized by using 0.5% HCl with the soil:washing solution mixing ratio of 1:3 for 1 hr treatment. On the contrary, HCS was most effectively remediated by using 1.0% HCl with the same soil:solution mixing ratio for 3 hr. This work demonstrated that the combined use of physical separation and soil washing could be a viable option to remediate soils highly contaminated with heavy metals.

In vitro evaluation of a removable partial denture framework using multi-directionally forged titanium

  • Suzuki, Ginga;Shimizu, Satoshi;Torii, Mana;Tokue, Ai;Ying, Guo;Yoshinari, Masao;Hoshi, Noriyuki;Kimoto, Katsuhiko;Miura, Hiromi;Hayakawa, Tohru;Ohkubo, Chikahiro
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.6
    • /
    • pp.369-375
    • /
    • 2020
  • PURPOSE. This study evaluated the availability of multi-directionally forged (MDF) titanium (Ti) as a component of removable partial dentures (RPDs). MDF-Ti remarkably improved the mechanical properties of RPDs due to its ultrafine-grained structure. MATERIALS AND METHODS. The wear resistance, plaque adhesion, and machinability of MDF-Ti were tested. As controls, commercially pure (CP) titanium was used for wear, plaque adhesion, and machinability tests. For wear resistance, the volume losses of the titanium teeth before and after wear tests were evaluated. Plaque adhesion was evaluated by the assay of Streptococcus mutans. In the machinability test, samples were cut and ground by a steel fissure bur and carborundum (SiC) point. An unpaired t-test was employed for the analysis of the significant differences between MDF-Ti and the control in the results for each test. RESULTS. Wear resistance and plaque adherence of MDF-Ti similar to those of CP-Ti (P>.05) were indicated. MDF-Ti exhibited significantly larger volume loss than CP-Ti in all conditions except 100/30,000 g/rpm in machinability tests (P<.05). CONCLUSION. Although the wear resistance and plaque adherence of MDF-Ti were comparable to those of controls, MDF-Ti showed better machinability than did CP-Ti. MDF-Ti could be used as a framework material for RPDs.

Fabrication and Performance Demonstration of the 20kW Class Inverted-type Cross-flow Turbine Based on Computational Fluid Dynamics Analysis (전산유체역학 해석에 기반한 20kW급 도립형 횡류수차의 제작 및 성능 실증)

  • Ham, Sangwoo;Choi, Ji-Woong;Jeong, Changho;Kim, Taeyun;Choi, Sangin;Jin, Glenn Young;Lee, Jeong Wan;Ha, Hojin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.2
    • /
    • pp.107-119
    • /
    • 2021
  • The cross-flow turbine is one of the most famous and widely used hydraulic power systems for a long time. The cross-flow turbine is especially popular in many countries and remote regions where off-grided because of its many benefits such as low cost, high efficiency at low head, simple structure, and easy maintenance. However, most modern turbines, including the cross-flow turbine, are unsuitable for the ultra-low head situation, known as less than 3m water head or zero head with over 0.5m/s flow velocity. In this study, we demonstrated a 20kW class inverted-type cross-flow turbine's performance. First, we reevaluated our previous studies and introduced how to design the inverted-type cross-flow turbine. Secondly, we fabricated the 20kW class inverted-type cross-flow turbine for the performance test. And then, we designed a testbed and installed the turbine system in the demonstration facility. In the end, we compare the demonstration with its previous CFD results. The comparing result shows that both CFD and real model fitted on guide vane angle at 10 degrees. At the demonstration, we achieved 42% turbine efficiency at runner speed 125 RPM.

Optimization of Medium Composition for Biomass Production of Lactobacillus plantarum 200655 Using Response Surface Methodology

  • Choi, Ga-Hyun;Lee, Na-Kyoung;Paik, Hyun-Dong
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.5
    • /
    • pp.717-725
    • /
    • 2021
  • This study aimed to optimize medium composition and culture conditions for enhancing the biomass of Lactobacillus plantarum 200655 using statistical methods. The one-factor-at-a-time (OFAT) method was used to screen the six carbon sources (glucose, sucrose, maltose, fructose, lactose, and galactose) and six nitrogen sources (peptone, tryptone, soytone, yeast extract, beef extract, and malt extract). Based on the OFAT results, six factors were selected for the Plackett-Burman design (PBD) to evaluate whether the variables had significant effects on the biomass. Maltose, yeast extract, and soytone were assessed as critical factors and therefore applied to response surface methodology (RSM). The optimal medium composition by RSM was composed of 31.29 g/l maltose, 30.27 g/l yeast extract, 39.43 g/l soytone, 5 g/l sodium acetate, 2 g/l K2HPO4, 1 g/l Tween 80, 0.1 g/l MgSO4·7H2O, and 0.05 g/l MnSO4·H2O, and the maximum biomass was predicted to be 3.951 g/l. Under the optimized medium, the biomass of L. plantarum 200655 was 3.845 g/l, which was similar to the predicted value and 1.58-fold higher than that of the unoptimized medium (2.429 g/l). Furthermore, the biomass increased to 4.505 g/l under optimized cultivation conditions. For lab-scale bioreactor validation, batch fermentation was conducted with a 5-L bioreactor containing 3.5 L of optimized medium. As a result, the highest yield of biomass (5.866 g/l) was obtained after 18 h of incubation at 30℃, pH 6.5, and 200 rpm. In conclusion, mass production by L. plantarum 200655 could be enhanced to obtain higher yields than that in MRS medium

Superfine-Nanocomposite Mo - Cu Powders Obtained by Using Planetary Ball Milling

  • Lee, Han-Chan;Moon, Kyoung-Il;Shin, Paik-Kyun;Lee, Boong-Joo
    • Journal of the Korean Physical Society
    • /
    • v.73 no.9
    • /
    • pp.1340-1345
    • /
    • 2018
  • Mo-10 at.% Cu nanocomposite powders were fabricated by using planetary ball-milling (PBM), a mechanical alloying technique for preparing nanocomposite alloy powders of metals with mutual insolubility, and the variations in the physical and the chemical characteristics with the process conditions were investigated. We observed that Mo-10 at.% Cu was an appropriate composition to ensure a good alloying grade and minimal welding between particles. The influences of the temperature and the milling conditions on the mechanical alloying process and the phase change of Mo-10 at.% Cu composite powders were investigated, and the particle and the grain sizes of the powders after mechanical alloying were confirmed. The Mo-10 at.% Cu powders showed homogeneous elemental distributions and no phase changes up to $1200^{\circ}C$; their compositions were retained after the mechanical alloying process. The finest grain size obtained was about 5 nm for powders processed using optimum PBM processing conditions: ball-to-powder weight ratio of 5 : 1, ambient air atmosphere, a milling time of 20 h, a rotation speed of 200 rpm, and a stearic acid content of 4 wt.% produced superfine-grained Mo-10 at.% Cu nanocomposite powders with an average grain size of 5 nm (which is smaller than that of other similar materials reported in the literature). The analytical results confirmed that the PBM technique presented here is a promising method for preparing superfine-grained Mo-10 at.% Cu powders with improved properties.

Evaluation of Sliding Friction Properties of Laser Surface Texturing Dimple Pattern with DLC Coating under GaInSn Liquid Metal Lubricant (액체금속(GaInSn)윤활하에서 DLC(ta-C) 코팅된 레이저 표면 텍스쳐링 딤플패턴의 미끄럼 마찰특성평가)

  • Kwon, Gyubin;Jang, Youngjun;Chae, Younghun
    • Tribology and Lubricants
    • /
    • v.37 no.3
    • /
    • pp.106-111
    • /
    • 2021
  • There are several studies on reducing the friction that occurs on the relative sliding contact surface of moving parts under extreme environments. In particular, a solid lubricated bearing is studied to solve the tribological problem with friction reduction and durability parts using solid lubricants (lead or silver) in a vacuum atmosphere. Galinstan is mainly used as a liquid metal lubricant, but it is inevitable to have limited tribological applications owing to its high coefficient of friction. Many researchers work on surface texturing for surface modification and precision processing methods. To increase durability and low friction, DLC coating with hydrophobicity is applied on the contact surface texture. Therefore, using an untextured specimen, a dimple specimen, and a DLC-coated dimple specimen under liquid metal lubrication, this paper presents the following experimental sliding friction characteristics in the sliding friction test. 1) The average coefficient of friction of the DLC-coated dimple specimen and dimple specimen are lower compared to that of a non-patterned specimen. 2) In the DLC-coated dimple specimens, the average coefficient of friction changes according to the change in the dimple density. 3) DLC-coated dimple specimens with a density of 12.5 have the lowest average coefficient of friction under 41.6 N of normal load and 143.3 RPM.