• 제목/요약/키워드: rough sets

검색결과 96건 처리시간 0.023초

A Study on Color Fuzzy Decision Algorithm in Video Object Segmentation

  • Byun, Oh-Sung;Moon, Sung-Ryong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제4권2호
    • /
    • pp.142-148
    • /
    • 2004
  • In this paper, we propose the color fuzzy decision algorithm to face segmentation in a color image. Our algorithm can segment without the user's interaction by fuzzy decision marking. And it removes small parts such as a noise using wavelet morphology in the image obtained by applying the fuzzy decision algorithm. Also, it merges and chooses the face region in each quantization image through rough sets. This video object division algorithm is shown to be superior to a conventional algorithm.

차량애드혹망을 위한 가변정밀도 러프집합 기반 부정행위 탐지 방법의 설계 및 평가 (Design and evaluation of a VPRS-based misbehavior detection scheme for VANETs)

  • 김칠화;배인한
    • Journal of the Korean Data and Information Science Society
    • /
    • 제22권6호
    • /
    • pp.1153-1166
    • /
    • 2011
  • 차량 네트워크에서 부정행위를 탐지하는 것은 안전 관련 응용 및 혼잡 완화 응용을 포함하는 광범위한 영향을 갖는 매우 중요한 문제이다. 대부분 부정행위 탐지 방법들은 악의적인 노드들의 탐지와 관련이 있다. 대부분 상황들에서, 차량들은 운전자의 이기적인 이유 때문에 틀린 정보를 보낼 수 있다. 합리적인 행위 때문에 부정행위를 하는 노드를 식별하는 것보다 거짓 경보 정보를 탐지하는 것이 더 중요하다. 이 논문에서, 우리는 경보 메시지를 전송한 후, 부정행위를 한 노드들의 행위를 관찰하여 거짓 경보 메시지를 탐지하는 가변 정밀도 러프집합 기반 부정행위 탐지 방법을 제안한다. 차량 네트워크에서 이동하는 노드의 타당한 행위들로부터 경보 프로파일인 경보 정보 시스템이 먼저 구축되어진다. 어떤 이동하는 차량이 다른 차량으로부터 경보 메시지를 받으면, 수신차량은 그 메시지로부터 경보종류를 알아낸다. 경과시간 후, 수신차량이 경보 전송차량으로부터 비콘을 받으면, 수신차량은 경보 정보 시스템으로부터 가변 정밀도 러프집합을 사용하여 상대적 분류 오차를 계산한다. 만일 그 상대적 분류 오차가 그 경보종류의 최대 허용 가능한 분류 오차보다 크면, 수신 차량은 그 메시지를 거짓 경보 메시지로 결정한다. 제안하는 방법의 성능은 모의실험을 통하여 2가지 척도, 즉 정확률과 부정확률로 평가되어진다.

Soft Set Theory Oriented Forecast Combination Method for Business Failure Prediction

  • Xu, Wei;Xiao, Zhi
    • Journal of Information Processing Systems
    • /
    • 제12권1호
    • /
    • pp.109-128
    • /
    • 2016
  • This paper presents a new combined forecasting method that is guided by the soft set theory (CFBSS) to predict business failures with different sample sizes. The proposed method combines both qualitative analysis and quantitative analysis to improve forecasting performance. We considered an expert system (ES), logistic regression (LR), and support vector machine (SVM) as forecasting components whose weights are determined by the receiver operating characteristic (ROC) curve. The proposed procedure was applied to real data sets from Chinese listed firms. For performance comparison, single ES, LR, and SVM methods, the combined forecasting method based on equal weights (CFBEWs), the combined forecasting method based on neural networks (CFBNNs), and the combined forecasting method based on rough sets and the D-S theory (CFBRSDS) were also included in the empirical experiment. CFBSS obtains the highest forecasting accuracy and the second-best forecasting stability. The empirical results demonstrate the superior forecasting performance of our method in terms of accuracy and stability.

Concepts and Design Aspects of Granular Models of Type-1 and Type-2

  • Pedrycz, Witold
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제15권2호
    • /
    • pp.87-95
    • /
    • 2015
  • In this study, we pursue a new direction for system modeling by introducing the concept of granular models, which produce results in the form of information granules (such as intervals, fuzzy sets, and rough sets). We present a rationale and several key motivating arguments behind the use of granular models and discuss their underlying design processes. The development of the granular model includes optimal allocation of information granularity through optimizing the criteria of coverage and specificity. The emergence and construction of granular models of type-2 and type-n (in general) is discussed. It is shown that achieving a suitable coverage-specificity tradeoff (compromise) is essential for developing granular models.

러프집합과 퍼지집합에 기반한 기능중심 컴포넌트의 재사용도 측정 (Measuring Reusability of the Function-Oriented Component Based on Rough and Fuzzy Sets)

  • 김혜경
    • 한국지능시스템학회논문지
    • /
    • 제9권4호
    • /
    • pp.375-383
    • /
    • 1999
  • 사용자가 최소의 이해와 수정 노력으로 적합한 컴포넌트를 선택할수 있는 방안이 요구된다, 따라서 본 논문에서는 컴포넌트의 재사용도 측정을 위한 혼합적 척도를 제안한다. 현업에서의 연구와 경험을 통해서 증명된 객관성 있는 척도들을 측정인자로 설정한다. 러프집합을 이용하여 각측정인자들이 컴포넌트 재상요에 미치는 영향의 정도를 평가하고 각 측정인자들의 상대적 중요도를 구한다, Sugeno의 퍼지적분을 이용하여 측정인자들의 중요도와 측정값들을 종합함으로써 컴포넌트들의 재사용도를 측정한다. 마지막으로 제안된 ordinal scale과 ratio scale에 따름을 보여준다.

  • PDF

러프집합에 의한 불완전 데이터의 처리에 관한 연구 (A Study on the Processing of Imprecision Data by Rough Sets)

  • 정구범;김두완;정환묵
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 춘계학술대회 학술발표 논문집
    • /
    • pp.11-15
    • /
    • 1998
  • 일반적으로 러프집합은 지식베이스 시스템에서 근사공간을 이용한 불확실한 데이터의 분류, 추론 및 의사결정 등에 사용된다. 지식베이스 시스템의 데이터 중에서 연속적인 구간 특성을 갖는 정량적 속성값이 불연속적일 때 중복 또는 불일치 등의 불확실성이 발생된다. 본 논문은 러프집합의 정량적 속성값들의 정성적 속성으로 변환시킬 때 식별 불가능 영역에 있는 정량적 속성값들을 명확한 경계를 갖는 보조구간으로 분리하여 불확실성을 제거함으로써 러프집합의 분류능력을 향상시키는 방법을 제안한다.

  • PDF

러프집합과 퍼지적분을 이용한 클래스 재사용도 측정 (Measuring The Reusability of Class By Rough Sets and Fuzzy Integral)

  • 김영천;김혜경;최완규;김영식;이성주
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2000년도 춘계학술대회 학술발표 논문집
    • /
    • pp.311-314
    • /
    • 2000
  • 컴포넌트의 재사용도 측정은 컴포넌트가 재사용되는 시점에서 컴포넌트의 이해와 적용을 위해 소요되는 노력의 정도를 측정한다. 여러 연구들이 컴포넌트의 재사용도 측정 방법을 제시하였지만 측정 속성(척도)들과 컴포넌트들의 삽입 삭제의 어려움, 가정된 지식의 요구, 각 측정 속성들에 대한 중요도 제시의 부재 등의 문제점들이 있다. 따라서, 본 연구에서는 이러한 문제점들을 해결하기 위해서 실제로 재사용되고 있는 객체지향 컴포넌트들과 여러 연구에서 제시되고 있는 메트릭스들을 종합하고, 퍼지 적분과 러프 집합을 이용하여 클래스의 재사용도를 측정한다.

  • PDF

러프 집합과 퍼지 집합에 기반한 프로그램 재사용 가능도 측정 (Program Reuse Possibility Measurement Based on Rough and Fuzzy Sets)

  • 김혜경;김미경;최완규;이성주
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 추계학술대회 학술발표 논문집
    • /
    • pp.145-149
    • /
    • 1998
  • 소프트웨어의 유지보수면에서, 재사용이 매우 중요시되고 있는 가운데, 사용자가 최소 노력으로 필요한 컴포넌트들을 선택 및 유사 컴포넌트들을 평가할 수 있는 방법이 필요하다. 따라서, 본 논문에서는 현업에서의 많은 연구와 실험을 통해서 그 타당성이 검증된 척도들을 측정 인자로 설정, 여기에 러프 집합으로써 각 측정 인자들의 중요도를 측정하고, 이러한 측정값들을 Sugeno의 퍼지 적분으로써 종합하여 컴포넌트의 재사용 가능도를 평가하여 재사용이 용이한 컴포넌트 순으로 사용자에게 제공할 수 있는 재사용 가능도 평가 방법을 제안한다.

  • PDF

가중 특징 값을 고려한 러프 집합 기반 비정상 행위 탐지방법의 설계 및 평가 (Design and Evaluation of a Rough Set Based Anomaly Detection Scheme Considering Weighted Feature Values)

  • 배인한;이화주;이경숙
    • 한국멀티미디어학회논문지
    • /
    • 제9권8호
    • /
    • pp.1030-1036
    • /
    • 2006
  • 무선 네트워크의 급속한 확산과 이동 컴퓨팅 응용은 네트워크 보안에 대한 전망을 변화시켰다. 비정상 행위 탐지는 시스템으로 모니터 되는 알 수 없는 행위나 이상한 행위에 대한 패턴 인식 작업이다. 본 논문에서는 셀룰러 이동 망에서 유해한 내부 공격 위장자를 효율적으로 식별할 수 있는 효율적인 러프 집합 기반 비정상 행위 탐지 방법을 제안한다. 제안하는 비정상 행위 탐지 방법에서는 특징 값으로 사용자의 무선 응용 계층의 추적 데이터를 사용한다. 특징 값을 기초로, 이동 사용자의 사용 패턴이 러프 집합에 의해 얻어지고, 그리고 모바일의 비정상 행위는 가중 특징 값을 고려한 러프 소속 함수에 적용하여 효과적으로 탐지될 수 있다. 제안하는 방법의 성능은 모의실험으로 평가하였다. 모의실험 결과, 중요도에 따라 특징 속성에 다른 가중치를 부여하는 방법이 비정상 행위를 더 잘 탐지한다는 것을 확인하였다.

  • PDF

The diagnosis of Plasma Through RGB Data Using Rough Set Theory

  • Lim, Woo-Yup;Park, Soo-Kyong;Hong, Sang-Jeen
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.413-413
    • /
    • 2010
  • In semiconductor manufacturing field, all equipments have various sensors to diagnosis the situations of processes. For increasing the accuracy of diagnosis, hundreds of sensors are emplyed. As sensors provide millions of data, the process diagnosis from them are unrealistic. Besides, in some cases, the results from some data which have same conditions are different. We want to find some information, such as data and knowledge, from the data. Nowadays, fault detection and classification (FDC) has been concerned to increasing the yield. Certain faults and no-faults can be classified by various FDC tools. The uncertainty in semiconductor manufacturing, no-faulty in faulty and faulty in no-faulty, has been caused the productivity to decreased. From the uncertainty, the rough set theory is a viable approach for extraction of meaningful knowledge and making predictions. Reduction of data sets, finding hidden data patterns, and generation of decision rules contrasts other approaches such as regression analysis and neural networks. In this research, a RGB sensor was used for diagnosis plasma instead of optical emission spectroscopy (OES). RGB data has just three variables (red, green and blue), while OES data has thousands of variables. RGB data, however, is difficult to analyze by human's eyes. Same outputs in a variable show different outcomes. In other words, RGB data includes the uncertainty. In this research, by rough set theory, decision rules were generated. In decision rules, we could find the hidden data patterns from the uncertainty. RGB sensor can diagnosis the change of plasma condition as over 90% accuracy by the rough set theory. Although we only present a preliminary research result, in this paper, we will continuously develop uncertainty problem solving data mining algorithm for the application of semiconductor process diagnosis.

  • PDF