
Original Article
International Journal of Fuzzy Logic and Intelligent Systems
Vol. 15, No. 2, June 2015, pp. 87-95
http://dx.doi.org/10.5391/IJFIS.2015.15.2.87

ISSN(Print) 1598-2645
ISSN(Online) 2093-744X

Concepts and Design Aspects of Granular
Models of Type-1 and Type-2
Witold Pedrycz
Department of Electrical & Computer Engineering, University of Alberta,Edmonton T6R 2V4 AB Canada
Department of Electrical and Computer Engineering, Faculty of Engineering, King Abdulaziz University,
Jeddah, Saudi Arabia
and
Systems Research Institute, Polish Academy of Sciences, Warsaw, Poland

Abstract

In this study, we pursue a new direction for system modeling by introducing the concept
of granular models, which produce results in the form of information granules (such as
intervals, fuzzy sets, and rough sets). We present a rationale and several key motivating
arguments behind the use of granular models and discuss their underlying design processes.
The development of the granular model includes optimal allocation of information granularity
through optimizing the criteria of coverage and specificity. The emergence and construction
of granular models of type-2 and type-n (in general) is discussed. It is shown that achieving
a suitable coverage-specificity tradeoff (compromise) is essential for developing granular
models.
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1. Introduction

It is apparent that there are no ideal models. Numerical data are not ideally captured (i.e.,
captured without any error) by any model, irrespective of the model’s complexity. Informed
by the principle of Ockahm’s razor, we strive to build simple models and establish a balance
between the requirements of accuracy and simplicity. In spite of the diversity of the architecture
of models (especially those emerging in the realm of computational intelligence), many
challenges remain. An interesting, innovative, and promising direction is to conceptualize and
build models at a higher level of abstraction; in this manner, the models become capable of
better coping with the system to be modeled. These models can be constructed in terms of
information granules; in what follows, these are referred to as granular models. Information
granules are formalized in various settings such as sets (intervals), fuzzy sets, and rough sets.
Depending on the nature of the model, we can talk about granular neural networks, granular
regression models, etc.
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The objective of this study is to conceptualize information
granularity as an essential design asset in system modeling,
which, when used properly, can make the model match the
complexity of the problem (system) and gives rise to a hierarchy
of granular models (models of type-1, type-2, etc.) to cope with
the complexity of the system under discussion.

The remainder of this paper is organized as follows. To
make the material self-contained, we start with a brief summary
of granular computing (Section 2). In Sections 3 and 4, we
develop a characterization of information granules, discussing
their two important characterizations, namely, coverage abilities
(related to the generalization facet of information granules) and
specificity description. We also identify their complementary
nature, which must be dealt with at the modeling level. The
concept of granular models is studied in Section 5; here, we
consider the idea of creating granular parameters of the original
numeric model, demonstrating how they give rise to granular
results. The detailed protocols for determining the granular
parameters of the models are covered in Section 6. Then, a
detailed example of rule-based architectures is considered to
demonstrate how the parameters of the model are realized in the
form of information granules (Section 7). Section 8 is devoted
to the realization of the hierarchy of granular models, resulting
in type-2 granular models and (in general) type-n granular
models. Conclusions are presented in Section 9.

2. Selected prerequisites: Granular computing

To provide a better idea of this study and to make it self-
contained, we present a concise introduction to granular comput-
ing, which is a formal conceptual framework for data analysis
and modeling tasks.

Information granules are intuitively appealing constructs that
play a pivotal role in human cognition and decision-making. We
perceive complex phenomena by reconciling existing knowl-
edge with available experimental evidence and structuring them
in the form of meaningful, semantically sound entities; these
entities are central to all ensuing processes for describing the
world, reasoning about the environment, and supporting decision-
making. The term information granularity has emerged in dif-
ferent contexts and has numerous areas of application, and
therefore, carries various meanings. In artificial intelligence,
information granularity is central to problem solving through
problem decomposition, in which various subtasks are formed
and solved individually. In general, an information granule is
a collection of elements drawn together by their closeness (re-

semblance, proximity, functionality, etc.), articulated in terms
of some useful spatial, temporal, or functional relationship.
Granular computing considers representing, constructing, and
processing such information granules.

We can refer here to some areas that offer compelling evi-
dence as to the nature of underlying processing and interpreta-
tion in which information granules play a pivotal role:

image processing, processing and interpretation of time se-
ries, granulation of time, and design of software systems. In-
formation granules are abstractions. As such, they naturally
give rise to hierarchical structures: the same problem or system
can be examined at different levels of specificity (detail) de-
pending on the complexity of the problem, available computing
resources, and particular goals to be addressed. The hierarchy
of information granules is inherently visible when processing
information granules. The level of detail (which is represented
by the size of information granules) becomes an essential part
of the hierarchical processing of information, where different
levels of the hierarchy are indexed by the size of information
granules.

Even the commonly encountered simple examples presented
above indicate that (a) information granules are a key compo-
nent of knowledge representation and processing; (b) the level
of granularity of information granules (their size) becomes cru-
cial to the problem description and the overall problem-solving
strategy; (c) the hierarchy of information granules is an impor-
tant aspect of the perception of phenomena and offers a tangible
method of dealing with complexity, namely, by focusing on
the most essential facets of the problem; and (d) there is no
universal level of granularity for information; essentially, the
size of granules becomes problem-oriented and user-dependent.

There are several well-known formal settings in which infor-
mation granules can be defined and processed.

Sets (intervals) realize a concept of abstraction by introduc-
ing the notion of a dichotomy: an element belongs to a given
information granule or not. In addition to set theory, we have
the well-developed discipline of interval analysis. Alternatively
to an enumeration of elements belonging to a given set, sets are
described by characteristic functions taking on values in {0, 1}.

Fuzzy sets [16, 17] provide an important conceptual and algo-
rithmic generalization of sets. By allowing partial membership
of an element in a given information granule, we increase real-
ism. This phenomenon helps in cases in which the principle of
dichotomy is neither justified nor advantageous. The descrip-
tion of a fuzzy set is given in terms of membership functions
taking on values in the unit interval. Formally, a fuzzy set A is
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described by a membership function mapping the elements of a
universe X to the unit interval [0, 1].

Shadowed sets [10] offer an interesting description of infor-
mation granules by distinguishing among elements that either
fully belong to the concept, are excluded from it, or whose be-
longingness is unknown. Formally, these information granules
are described by the mappingX : X→ {1, 0, [0, 1]}, where the
elements with a membership quantified as the entire [0, 1] inter-
val are used to describe the shadow of the construct. Given the
nature of the mapping here, shadowed sets can be considered a
granular description of fuzzy sets, where the shadow is used to
determine unknown membership values, which, in fuzzy sets,
are distributed over the entire universe of discourse. Note that
the shadow produces non-numeric descriptors of membership
grades.

Probability-oriented information granules are expressed in
the form of probability density functions or (simple) probability
functions; they capture a collection of elements resulting from
an experiment. Based on the concept of probability, the granu-
larity of information becomes a manifestation of the occurrence
of different elements. For instance, each element in a set has a
probability density function truncated to [0,1], which quantifies
the degree of membership to the information granule.

Rough sets emphasize the roughness of the description of a
given concept X when realized in terms of the indiscernibility
relation that is provided in advance. The roughness of the de-
scription ofX is given by its lower and upper approximations of
a certain rough set. One can refer to a plethora of applications.

3. Information granules: coverage and specificity
characterization

From the perspective of this study, there are two important and
directly applicable characterizations of information granules,
namely coverage and specificity [9-11].

Coverage The concept of coverage of information granule,
cov(.) is discussed with regard to some experimental data exist-
ing in Rn, that is {x1, x2, . . . , xN} and as the name stipulates,
is concerned with its ability to represent (cover) these data.
In general, the larger number of data is being “covered”, the
higher the coverage measure. Formally, the coverage is a non-
decreasing function of the number of data that are represented
by the given information granule A. Depending upon the na-
ture of information granule, the definition of cov(A) can be
properly expressed. For instance, when dealing with a multi-
dimensional interval (hypercube) A, cov(A) in its normalized

form is related with the cardinality of the data belonging to A,

cov(A) =
1

N
card{xi | xi ∈ A}. For fuzzy sets the coverage is

realized as a s-count of A, where we summed up the degrees of

membership of xk to A, cov(A) =
1

N

N∑
i=1

A(xi).

Specificity Intuitively, the specificity relates to a level of ab-
straction conveyed by the information granules. The higher the
specificity, the lower the level of abstraction. The monotonicity
property holds: if for the two information granules A and B
one has
A ⊂ B (when the inclusion relationship is articulated ac-

cording to the formalism in which A and B are expressed) then
specificity, sp(.) [14] satisfies the following inequality: sp(A)
≥ sp(B). Furthermore for a degenerated information granule
comprising a single element x0 we have a boundary condition
sp({x0})= 1. In case of a one-dimensional interval information
granules, one can contemplate expressing specificity on a basis
of the length of the interval, say sp(A)= exp(−length(A));
obviously the boundary condition specified above holds here.
If the range range of the data is available (it could be easily de-
termined), say, then sp(A)= 1− |b− a|range where A = [a, b],
range= [mink xk,maxk xk].

The realizations of the definitions can be augmented by some
parameters that contributes to their flexibility. It is also intu-
itively apparent that these two characteristics are associated:
the increase in one of then implies a decrease in another: an
information granule that “covers” a lot of data cannot be overly
specific and vice versa.

4. Information granules of higher type

By information granules of higher type (2nd type and nth type,
in general) we mean granules in the description of whose we use
information granules rather than numeric entities. For instance,
in case of type-2 fuzzy sets we are concerned with information
granules- fuzzy sets whose membership functions are granular.
As a result, we can talk about interval-valued fuzzy sets, fuzzy
fuzzy sets (or fuzzy2 sets, for brief), probabilistic sets and alike.
The grade of belongingness are then intervals in [0,1], fuzzy
sets with support in [0, 1], probability functions truncated to
[0,1[, etc. In case of type -2 intervals we have intervals whose
bounds are not numbers but information granules and as such
can be expressed in the form of intervals themselves, fuzzy
sets, rough sets or probability density functions. Information
granules of higher order are those whose description is realized
over a universe of discourse whose elements are information
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granules. In some sense rough sets could be sought as infor-
mation granules of order-2. Information granules have been
encountered in numerous studies reported in the literature; in
particular stemming from the area of fuzzy clustering [4][12]
in which fuzzy clusters of type-2 have been investigated [5] or
they are used to better characterize a structure in the data and
could be based upon the existing clusters [13].

5. An emergence of granular models: structural
developments

The concept of the granular models form a generalization of
numeric models no matter what their architecture and a way of
their construction are. In this sense, the conceptualization of-
fered here are of general nature. They also hold for any formal-
ism of information granules. A numeric model M0 constructed
on a basis of a collection of training data (xk, targetk), xk ∈Rn

and targetk∈R comes with a collection of its parameters aopt
where a∈Rp. Quite commonly, the estimation of the parameters
is realized by minimizing a certain performance index Q (say,
a sum of squared error between targetk and M0(xk)), namely
aopt= arg Mina Q(a). To compensate for inevitable errors of the
model (as the values of the index Q are never equal identically
to zero), we make the parameters of the model information
granules, resulting in a vector of information granules A = [A1

A2. . . Ap] built around original numeric values of the parameters
a. The elements of the vector a are generalized, the model be-
comes granular and subsequently the results produced by them
are information granules. Formally speaking, we have

- granulation of parameters of the model A = G(a) where
G stands for the mechanisms of forming information
granules, viz. building an information granule around the
numeric parameter

- result of the granular model for any x producing the
corresponding information granule Y, Y= M1(x, A) =
G(M0(x))= M0(x, G(a)).

Information granulation is regarded as an essential design as-
set. By making the results of the model granular (and more
abstract in this manner), we realize a better alignment of G(M0)
with the data. Intuitively, we envision that the output of the
granular model “covers” the corresponding target. Formally,
let cov(target, Y) denote a certain coverage predicate (either
Boolean or multivalued) quantifying an extent to which target
is included (covered) in Y.

The design asset is supplied in the form of a certain allow-
able level of information granularity e which is a certain non-
negative parameter being provided in advance. We allocate
(distribute) the design asset across the parameters of the model
so that the coverage measure is maximized while the overall
level of information granularity serves as a constraint to be sat-
isfied when allocating information granularity across the model,
namely

∑p
i=1 εi = Pε. The constraint-based optimization prob-

lem reads as follows

max
ε1,ε2,...,εp

N∑
k=1

cov(targetk ∈ Yk)

subject to
p∑
i=1

εi = pε and εi ≥ 0 (1)

The solution to the problem can be produced by invoking one
of the protocols outlined in Section 6.

The monotonicity property of the coverage measure is appar-
ent: the higher the values of e, the higher the resulting coverage.
Hence the coverage is a non-decreasing function of e.

Along with the coverage criterion, one can also consider
the specificity of the produced information granules. It is a
non-increasing function of e. The more general form of the
optimization problem can be established by engaging the two
criteria leading to the two-objective optimization problem

- determine optimal allocation of information granularity
[ε1, ε2, . . . , εp] so that the coverage and specificity criteria
become maximized.

Plotting these two characteristics in the coverage –specificity
coordinates offers a useful visual display of the nature of the
granular model and possible behavior of the behavior of the
granular model as well as the original model. Several illustra-
tive plots shown in Figure 1 illustrate typical changes in the
specificity/coverage when changing the values of information
granularity e. One can consider those coming as a result of
the maximization of coverage while reporting also the obtained
values of the specificity. There are different patterns of the
changes between coverage and specificity. The curve may ex-
hibit a monotonic change with regard to the changes in e and
could be approximated by some linear function. There might be
some regions of some slow changes of the specificity with the
increase of coverage with some points at which there is a sub-
stantial drop of the specificity values. A careful inspection of
these characteristics helps determine a suitable value of e – any
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(a) (b) (c)

Figure 1. Characteristics of coverage-specificity of granular models:
(a) monotonic behavior of the relationship with the changes of ε, (b)
increase of coverage and retention of specificity with the increase of
ε, (c) rapid drop in specificity for increasing values of ε.

further increase beyond this limit might not be beneficial as no
significant gain of coverage is observed however the drop in the
specificity compromises the quality of the granular model. Fur-
thermore Figure 1 highlights an identification of suitable values
of the level of information granularity. The global behavior of
the granular model can be assessed in a global fashion by com-
puting an area under curve (AUC) of the coverage-specificity
curve present in Figure 1. Obviously, the higher the AUC value,
the better the granular model. The AUC value can be treated as
an indicator of the global performance of the original numeric
model produced when assessing granular constructs built on
their basis. For instance, the quality of the original numeric
models M0 and M ′0 could differ quite marginally but the corre-
sponding values of their AUC could vary quite substantially by
telling apart the models. For instance, two neural networks of
quite similar topology may exhibit similar performance how-
ever when forming their granular generalizations, those could
differ quite substantially in terms of the resulting values of the
AUC.

As to the allocation of information granularity, the maxi-
mized coverage can be realized with regard to various alterna-
tives as far as the data are concerned: (a) the use of the same
training data as originally used in the construction of the model,
(b) use the testing data, and (c) usage of some auxiliary data.

6. Protocols of optimal allocation of information
granularity

The numeric parameters of the model are to be made granular.
In what follows, to illustrate the idea, we consider interval
information granules spanned over the numeric values. The
allocation of information granularity can be realized in many
different ways by engaging various levels of sophistication.
The series of protocols presented below is organized with the
increasing level of flexibility each of them supporting a better

usage of information granularity:

P1: uniform allocation of information granularity. This pro-
tocol is the simplest one. It does not invoke any optimization
mechanism. All numeric values of the parameters are treated
in the same way and become replaced by intervals of the same
length. Furthermore the intervals are distributed symmetrically
around the original values of the parameters.

P2: uniform allocation of information granularity with asym-
metric position of intervals around the numeric parameter. Here
we encounter some level of flexibility: even though the inter-
vals are of the same length, their asymmetric localization brings
a certain level of flexibility, which could be taken advantage
of during the optimization process. More specifically, we al-
locate the intervals of lengths εγ and ε(1− γ) to the left and
to the right from the numeric parameter where γ ∈ [0,1] con-
trols asymmetry of localization of the interval whose overall
length is e. Another variant of the method increases an avail-
able level of flexibility by allowing for different asymmetric
localizations of the intervals that can vary from one parameter
to another. Instead of a single parameter of asymmetry (γ) we
admit individual γi for various numeric parameters.

P3: non-uniform allocation of information granularity with
symmetrically distributed intervals of information granules.
Each parameter of the model is endowed with the individual
level of information granularity εi.

P4: non-uniform allocation of information granularity with
asymmetrically distributed intervals of information granules.
Among all the protocols discussed so far, this one exhibits the
highest level of flexibility.

P5: An interesting point of reference, which is helpful in
assessing a relative performance of the above methods, is to
consider a random allocation of granularity. By doing this, one
can quantify how the optimized and carefully thought out pro-
cess of granularity allocation is superior over a purely random
allocation process.

While the allocation of information granularity realized above
through a collection of protocols offers several main strategies,
some of the implementation details are dependent on the nature
of the model. For instance if all parameters of the model are
in the same range, say [0,1] (as encountered in fuzzy neural
networks operating logic operators) then the intervals around
the numeric parameter ai are formed as shown above, namely
P1 [ai − ε/2, ai + ε/2]

P2 [ai − εγ,ai + ε(1− γ)] or [ai − εγ�, ai + ε(1− γ�)]
P3 [ai − ε�/2, ai + ε�/2]

In case the parameters of the model are localized in different

91 | Witold Pedrycz



http://dx.doi.org/10.5391/IJFIS.2015.15.2.87

ranges, the realization of the intervals involves the magnitude
of the parameters, say for P1

[ai(1−ε/2), ai(1+ε/2)] if ai 6= 0 and [ai−ε/2, ai+ε/2] if ai 6= 0

7. Rule-based models – schemes of allocation of
information granularity

These functional rules (Takagi-Sugeno format of the conditional
statements) link any input space with the corresponding local
model whose relevance is confided to the region of the input
space determined by the fuzzy set standing in the input space
(Ai). The local character of the conclusion makes an overall
development of the fuzzy model well justified: we fully adhere
to the modular modeling of complex relationships. The local
models (conclusions) could vary in their diversity; in particular
local models in the form of constant functions (mi) are of
interest

- if x is Ai then y is mi (2)

These models are then equivalent to those produced by the
Mamdani-like rules with a weighted scheme of decoding (de-
fuzzification). There hs been a plethora of design approaches to
the construction of rule-based models, cf. [1-3, 6-8, 18, 19].

Information granularity emerges in fuzzy models in several
ways by being present in the condition parts of the rules, their
conclusion parts and both. In a concise way, we can describe
this in the following way (below the symbol G(.) underlines the
granular expansion of the fuzzy set construct abstracted from
their detailed numeric realization or a granular expansion of the
numeric mapping).

(i) Information granularity associated with the conditions of
the rules. We consider the rules coming in the format

- if G(Ai) then fi (3)

where G(Ai) is the information granule forming the condition
part of the i-th rule. An example of the rule coming in this
format is the one where the condition is described in terms of a
certain interval-valued fuzzy set or type-2 fuzzy set, G(Ai).

(ii) Information granularity associated with the conclusion
part of the rules. Here the rules take on the following form

- if x is Ai then G(fi) (4)

with G(fi) being the granular local function. The numeric map-
ping fi is made more abstract by admitting granular parameters.

For instance instead of mi we consider G(mi) where G(mi)

is an interval or a linear function whose parameters are fuzzy
numbers.

(iii) Information granularity associated with the condition
and conclusion parts of the rules. This forms a general version
of the granular model and subsumes the two situations listed
above. The rules read now as follows

- if G(Ai) then G(fi) (5)

The augmented expression for the computations of the output
of the model generalizes the expression used in the description
of the fuzzy models (3). We have

Y =

c∑
i = 1

⊕

(G(Ai(x)
⊗

G(fi)) (6)

where the algebraic operations shown in circles
⊗

and⊕ reflect
that the arguments are information granules instead of numbers
(say, fuzzy numbers). The detailed calculations depend upon
the formalism of information granules being considered. Let
us stress that Y is an information granule. Obviously, the
aggregation given by (6) applies to (i) and (ii) as well; here we
have some simplifications of the above stated formula. The two
commonly used formalisms already reported in the literature
are interval-valued fuzzy sets and type 2 fuzzy sets [15].

8. A hierarchy of granular models: towards type-
2 and type-n granular models

The construction of the granular model can be expanded to form
additional layer of the granular constructs and granular models.
In essence, we develop a models whose granular parameters are
made information granules of higher type, say those of type-2.

We proceed with a construction of the granular model of type-
2 by forming their granular parameters on a basis of the initially
available parameters of the numeric model M0. Let us recall
that the granular parameters A1, A2, . . . , Ap have been formed
on a basis of the data X. Considering a certain value of the level
of information granularity e (whose selection was made on a
basis of the analysis of the coverage –specificity characteristics,
refer to Figure 2) has been selected, say e0, there are still some
data remaining that are not “covered” by this granular model.
Denote by Z these residual data not covered by the granular
model produced at the first level of the hierarchy. They can be
referred to as type-1 (granular) outliers. Now the parameters Ai
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are made information granules of higher type with anticipation
that this could help cover the data present in Z. In brief, we form
an information granule of type-2 A∼i = G(Ai) = G(G(ai)).
The construction of A∼i is completed in such a way so that the
data in X are “covered” by the model with type-2 information
granules. Here one can envision a certain tradeoff between
coverage and specificity offered by different values of e. The
hierarchy of the models is visualized in Figure 2. Here we
highlight a way in which the granular parameters are built and
an emergence of the construct of higher type.

Proceeding with the specific realization of information gran-
ules, in case of interval-valued parameters, we observe an emer-
gence of the visible hierarchy of information granules of higher
type (granular intervals). Originally, the model M0 produces
numeric results (sought of information granules of type-0). The
model formed at the next layer of the hierarchy (M1) generates
intervals Y whereas moving to the next layer of the hierar-
chy (model M2) the results are in the form of granular intervals
(whose bounds are apparently information granules themselves).
The nature of the results is visualized in Figure 2 (a).

In parallel, we show a series of hierarchically structured
models, Figure 2 (b) where the successive layers of the model
are invoked depending upon the predefined levels of information
granularity e and e*. For any input x they produce a numeric
output, granular output (Y) and granular output of type-2 Y ∼.
The formation of the granular model of type-2 is implied by

the predefined level of e*. Again the detailed design of the
parameters of the models in the form of type-2 information
granules is realized in the similar way as discussed in case of
granular parameters (resulting in type-1 granular models). We
allocate information granularity to the bounds of the intervals
of A1, A2, . . . , Ap so that the coverage of data X is maximized.
As before one can monitor the behavior of the granular model
formed in this way by inspecting the values of coverage and
specificity.

There are two boundary situations worth emphasizing:

(a) selecting the values of e* for which the highest coverage
is attained. In this situation, we are left with a small set of data
Z to be dealt with at the next level of the hierarchy, in particular
Z could be empty.

(b) selecting e* such that the highest specificity is attained.
Now the data to be processed by M2 is almost the same as X,
Z≈X.

One could solve a certain optimization problem formulated
as follows. We choose such ε∗ for which AUC(M2, ε∗) attains
its maximal value, viz. ε∗opt = arg Max AUC(M2, ε∗). This

(a)

(b)

Figure 2. A hierarchy of interval-based information granules of higher
type (a) and a realization of the successively available information
granules of the output (b).

Figure 3. A hierarchy of granular models with increasing types of
information granules of their parameters.

makes the type-2 granular model optimized with regard to the
level of information granules specified at the lower conceptual
level.

If the information granules are realized as fuzzy sets, follow-
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ing this scheme, we produce type-2 or interval –valued fuzzy
sets of results, see Figure 3. Again as before, in the optimal
allocation of information granularity we engage methods of
evolutionary optimization in the realization of the protocols
outlined in Section 6.

The above construction can carried out at the higher levels of
hierarchy leading to granular models of type-3, 4, etc. In this
case the successive data being used in the resulting construc-
tions could be sought as outliers of type-1, type-2, etc.

With regard to the hierarchy outlined above, we may draw a
certain analogy with some well known linear regression models.
It is obvious that in the models of this class, for any x one easily
determines the numeric output (y) or augment it in the form of
the confidence interval – this corresponds to the two levels of
the above hierarchy where the models M0 and M1 have been
established.

9. Conclusions

This study proposed a new direction for granular modeling of
constructs of higher types. Successive granular system model-
ing can lead to the formation of granular parameters of type-1,
type-2, etc. and to the production of models of type M1, M2,
. . . , Mn. The containment relationship holds in the design of
the series of models; starting from M0, they are developed to en-
hance the functionality of the successively constructed models
by engaging information granules of higher types. Along with
the realization of the models, one can also identify potential out-
liers, which, depending on the level of modeling at which they
arise, can be labeled type-0, type-1, or type-2 (granular) out-
liers. The increasing number of types of information granules
is beneficial; however, one must be aware that unless there are
some legitimate reasons not to, confining the system to type-2
information granules (and related models) is a sound choice.
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