• Title/Summary/Keyword: rotors

Search Result 410, Processing Time 0.023 seconds

Design of Cutter Profile for Screw Rotor) (스크류 로터를 가공하기 위한 커터의 치형설계와 가공에 관한 연구)

  • 홍형식
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1996.10a
    • /
    • pp.79-84
    • /
    • 1996
  • Recently a symmetric and non-symmetric profile of screw rotor has been designed in the interior. Howere the processing method of screw rotor and the cutter design for screw rotor were not studied. Therefor we could not make the shape of the screw rotor designed by profile function with computer. In this study we have made cutter profile design program and manufactured cutters for screw rotors using H.S.S We machined screw rotors of symmetric 4x6 profile non-sysmmetric 4x6 profile with almighty milling machine.

  • PDF

Effects of Asymmetry of Bearing Damper Stiffness on the Stability of Rotors (베어링 지지댐퍼 강성의 비대칭이 회전체 동특성에 미치는 영향)

  • 제양규
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.6
    • /
    • pp.463-469
    • /
    • 2004
  • In order to improve the instability of journal bearings, the leaf spring dampers (LSD) are introduced. The effects of LSD on the stability of journal bearings are investigated theoretically The stability of the journal bearing with LSD are compared with the results of the journal bearing without LSD. And the effects of the asymmetry of the stiffness of the leaf spring damper on the stability of rotors are also investigated.

Effects of Asymmetry of Bearing Damper Stiffness on the Stability of Rotors (베어링 지지댐퍼 강성의 비대칭이 회전체 동특성에 미치는 영향)

  • 제양규
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.100-106
    • /
    • 2003
  • In order to improve the instability of a plane journal bearing, the leaf spring dampers (LSD) are introduced. The effects of LSD on the stability of a plane journal bearing are investigated theoretically. The stability of a plane journal bearing with LSD are compared with the results of a plane journal bearing without LSD. And the effects of the asymmetry of the stiffness of the leaf spring damper on the stability of rotors are also investigated.

  • PDF

Balance quality requirements of rigid rotors - Balance errors(ISO 1940-2) (강성회전체의 평형특성 요구조건 - 평형 오차)

  • 전오성;최상규
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.463-467
    • /
    • 2003
  • This part of ISO 1940 covers the following: a) identification of errors in the balancing process of rigid rotors: b) assessment of errors: c) guidelines for taking into account: d) the evaluation of residual unbalance in two correction planes. Detailed consideration of errors associated with the determination of residual unbalance is covered in the first part of ISO 1940.

  • PDF

Development and Validations of the Aerodynamic Analysis Program of Multi-Rotors by Using a Free-Wake Method (자유후류 기법을 이용한 다중로터 공력해석 프로그램의 개발 및 검증)

  • Park, Sang-Gyoo;Lee, Jae-Won;Lee, Sang-Il;Oh, Se-Jong;Yee, Kwang-Jung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.10
    • /
    • pp.859-867
    • /
    • 2007
  • The objective of this study is to develop and validate a numerical method which can handle the multi-rotor aerodynamic characteristics. For the purpose of power estimation, table look-up method is implemented to the existing unsteady panel code that is coupled with a time-marching free wake model. Also, the Reynolds number scaling is implemented for the application to various regions of Reynolds number. The computed results are validated against the available experimental data for coaxial and tandem rotors. In the validation case for the coaxial rotor, more accurate result is acquired when the thickness effect is considered. The wake instability problem occurs at a particular separation distance between the rotors for tandem rotors. The wake instability is avoided by setting the single-rotor wake geometry as the initial wake geometry for the multi-rotor analysis. The estimated result for rotor separation effect is compared with the result of the momentum theory.

Aeroelastic Stability Analysis of Bearingless Rotors with Composite Flexbeam in Hover (복합재 유연보를 갖는 무베어링 로우터 시스템의 정지 비행시 공탄성 안정성 해석)

  • Lim, In-Gyu;Choi, Ji-Hoon;Lee, In;Han, Jae-Hung
    • Composites Research
    • /
    • v.17 no.3
    • /
    • pp.29-37
    • /
    • 2004
  • The aeroelastic stability analysis of composite bearingless rotors is investigated using a large deflection beam theory in hover. The bearingless rotor configuration consists of a single flexbeam with a wrap-around type torque tube and the pitch links located at the leading edge and trailing edge of the torque tube. The outboard main blade, flexbeam and torque tube are all assumed to be an elastic beam undergoing flap bending, lead-lag bending, elastic twist and axial deflections, which are discretized into beam finite elements. For the analysis of composite bearingless rotors, flexbeam is assumed to be a rectangular section made of laminate. Two-dimensional quasi-steady strip theory is used for aerodynamic computation. The finite element equations of motion for beams are obtained from Hamilton's principle. The p-k method is used to determine aeroelastic stability boundary. Numerical results are presented for selected bearingless rotor configurations based on the lay-up of laminae in the flexbeam and pitch links location. A systematic study is made to identify the importance of the stiffness coupling terms on aeroelastic stability for various fiber orientation and for different configuration.

Dynamic Modeling and Control Techniques for Multi-Rotor Flying Robots (멀티로터 무인비행로봇 동역학적 모델링 및 제어기법 연구)

  • Kim, Hyeon;Jeong, Heon Sul;Chong, Kil To;Lee, Deok Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.2
    • /
    • pp.137-148
    • /
    • 2014
  • A multi-rotor is an autonomous flying robot with multiple rotors. Depending on the number of the rotors, multi-rotors are categorized as tri-, quad-, hexa-, and octo-rotor. Given their rapid maneuverability and vertical take-off and landing capabilities, multi-rotors can be used in various applications such as surveillance and reconnaissance in hostile urban areas surrounded by high-rise buildings. In this paper, the unified dynamic model of each tri-, quad-, hexa-, and octo-rotor are presented. Then, based on derived mathematical equations, the operation and control techniques of each multi-rotor are derived and analyzed. For verifying and validating the proposed models, operation and control technique simulations are carried out.

Optimum Design on Lobe Shapes of Gerotor Oil Pump

  • Kim, J.H.;Kim, Chul;Chang, Y.J.
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.9
    • /
    • pp.1390-1398
    • /
    • 2006
  • A gerotor pump is suitable for oil hydraulics of machine tools, automotive engines, compressors, constructions and other various applications. In particular the pump is an essential machine element that feeds lubricant oil in an automotive engine. The subject of this paper is the theoretical analysis of internal lobe pump whose the main components are the two rotors. Usually the outer one is characterized by lobes with a circular shape, while the inner rotor profile is determined as a conjugate to the other. For this reason the first topic presented here is the definition of the geometry of the rotors starting from the design parameters. The choice of these parameters is subject to some limitations in order to limit the pressure angle between the rotors. Now we will consider the design optimization. The first step is the determination of the instantaneous flow rate as a function of the design parameter. This allows us to calculate three performance indexes commonly used for the study of positive displacement pumps the flow rate irregularity, the specific flow rate, and the specific slipping. These indexes are used to optimize the design of the pump and to obtain the sets of optimum design parameter Results obtained from the analysis enable the designer and manufacturer of the oil pump to be more efficient in this field.

Analysis on Torque, Flowrate, and Volumetric Displacement of Gerotor Pump/Motor

  • Yun, Hongsik;Ham, Young-Bog;Kim, Sungdong
    • Journal of Drive and Control
    • /
    • v.17 no.2
    • /
    • pp.28-37
    • /
    • 2020
  • It is difficult to analytically derive the relationship among volumetric displacement, flowrate, torque, and rotation speed regarding an instantaneous position of gerotor hydraulic pumps/motors. This can be explained by the geometric shape of the rotors, which is highly complicated. Herein, an analytical method for the instantaneous torque, rotation speed, flowrate, and volumetric displacement of a pump/motor is proposed. The method is based on two physical concepts: energy conservation and torque equilibrium. The instantaneous torque of a pump/motor shaft is determined for the posture of rotors from the torque equilibrium. If the torque equilibrium is combined with the energy conservation between the hydraulic energy of the pump/motor and the mechanical input/output energy, the formula for determining the instantaneous volumetric displacement and flowrate is derived. The numerical values of the instantaneous volumetric displacement, torque, rotation speed, and flowrate are calculated via the MATLAB software programs, and they are illustrated for the case in which inner and outer rotors rotate with respect to fixed axes. The degrees of torque fluctuation, speed fluctuation, and flowrate fluctuation can be observed from their instantaneous values. The proposed formula may provide a better understanding of the design or analysis process of gerotor pumps/motors.

Mathematical modelling of wind turbine blades through volumetric view

  • Vardar, Ali;Eker, Bulent
    • Wind and Structures
    • /
    • v.9 no.6
    • /
    • pp.493-503
    • /
    • 2006
  • The demand for energy in the world increases everyday. Blade energy which is wind turbine is a significant resource which must be appreciated in this field. Especially, in places where wind potential is high, the usage of wind energy is a beneficial factor for every country's economy. In this study, first, 6 different miniature rotor were produced by using 6 different NACA profiles. Rotors were produced with three blades. The electrical performance and the speed of start of action values that are provided from each rotor form were established by measuring them in the wind tunnel. The calculation of area and volumetric values of each profile and wind surfaces were made with AutoCad technical drawing program. As a result, it was searched whether there is any relation between electrical performance values and speed of start of motion that rotors produced and volumetric values of rotors. The aim of this study is to find out whether rotor blade volume is one of factors that influences rotor performance. The general tendency observed here is that the increase in the volume of rotor blade leads to an increase in the speed of start of motion and to a decrease in the rotor performance.