• Title/Summary/Keyword: rotor resistance

Search Result 254, Processing Time 0.047 seconds

Simplified Rotor and Stator Resistance Estimation Method Based on Direct Rotor Flux Identification

  • Wang, Mingyu;Wang, Dafang;Dong, Guanglin;Wei, Hui;Liang, Xiu;Xu, Zexu
    • Journal of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.751-760
    • /
    • 2019
  • Since parameter mismatch seriously impacts the efficiency and stability of induction motor drives, it is important to accurately estimate the rotor and stator resistance. This paper introduces a method to directly calculate the rotor flux that is independent of stator and rotor resistance and electrical angle. It is based on obtaining the rotor and stator resistance using the model reference adaptive system (MRAS) method. The method has a lower computation burden and less adaptation time when compared with other rotor resistance estimation methods. This paper builds three coordinate frames to analyze the rotor flux error and rotor resistance error. A number of implementation issues are also considered.

Simultaneous Estimation of Rotor Speed and Rotor Resistance of an Induction Motor Using Variable Rotor Flux

  • Lee Zhen-Guo;Jeong Seok-Kwon
    • Journal of Power Electronics
    • /
    • v.5 no.4
    • /
    • pp.282-288
    • /
    • 2005
  • In this paper, a new speed sensorless induction motor scheme which can estimate rotor speed and rotor resistance simultaneously is presented. The rotor flux with a low frequency sinusoidal waveform is used to conduct on-line simultaneous estimation of the rotor speed and rotor resistance. Hence the proposed sensorless control method is robust to rotor resistance variations. Also, the control scheme has no current minor loop to determine voltage references. It contributes to good control performance at low speeds. Some simulation results supported by experiments are given to show the effectiveness of this method.

A study on the parameter identification of induction motors (유도전동기의 매개변수 추정에 관한 연구)

  • 김규식
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.6
    • /
    • pp.1-11
    • /
    • 1996
  • The rotor flux level need be changed frequently for field weakening or power efficiency control. Motor inductances depend on rotor flux but not on machine temperature. On the other hand, rotor resistance varies greatly with the machine temperature. Motor parameters such a sinductances and rotor resistance should be known precisely in order to attain high dynamic performance of inductin motor. In this paper, efficient an dnovel identification algorithms for motor inductances and rotor resistance are presented. The rotor flux is changed. As the result, the slip frequency is varied. The identificatin algorithm for rotor resistance measures the varied slip frequency and alters the estimated rotor resistance. Then, the estimated value of rotor resistance will approach its real value. The proposed identification algorithms are computationally simple and have very small identification errors.

  • PDF

An On-line Rotor Resistance Estimator for Induction Machine Drives

  • Kwon, Chun-Ki
    • Journal of Power Electronics
    • /
    • v.9 no.3
    • /
    • pp.354-364
    • /
    • 2009
  • Rotor resistance variation due to changing rotor temperature is a significant issue in the design of induction motor controls. In this work, a new on-line rotor resistance estimator is proposed based on an alternate qd induction machine model which provides better mathematical representation of an induction machine than the classical qd model (which uses constant parameters). This is because the former simultaneously includes leakage saturation, magnetizing path saturation, and distributed circuit effects in the rotor conductors. The comparisons via computer simulation studies show the ability of the proposed estimator to accurately track rotor resistance variation. For the experimental studies, due to the difficulty in measuring the actual rotor resistance, comparison of the controller performance using the proposed estimator, the classical qd model based estimator, and no estimator is made.

Rotor Resistance Estimation Using Slip Angular Velocity In Vector-Controlled Induction Motor (벡터제어 유도전동기의 슬립 각속도를 이용한 회전자 저항 추정)

  • Park, Hyunsu;Jo, Gwon-Jae;Choi, Jong-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.10
    • /
    • pp.1308-1316
    • /
    • 2018
  • Accurate tuning of parameter is very important in vector-controlled induction motor. Among the parameters of induction motor, detuning of rotor resistance used in controller design deteriorates drive performance. This paper presents a novel rotor resistance estimation strategy using slip angular velocity in vector-controlled induction motor drives. The slip angular velocity can be calculated by two methods. Firstly, it can be induced from the rotor voltage equation. Secondly, it can be induced from the difference between synchronous angular velocity and rotor angular velocity. The first method includes the rotor resistance, while the second method dose not include this parameter. From this fact, the rotor resistance can be identified by comparing the slip angular velocities in the two methods. In the tuned states of the rotor resistance, performances of flux estimator and speed drive are discussed. The simulation and experimental results are given to verify the validity of the proposed method in various situations.

On-line Identification of Rotor Resistance for Sensorless Induction Motors Using Variable Rotor Flux (가변 회전자 자속 지령에 의한 센서리스 유도전동기의 회전자 저항 실시간 동정)

  • Lee Zhen-Guo;Jeong Seok-Kwon
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.2
    • /
    • pp.101-109
    • /
    • 2005
  • The newly developed speed sensorless control scheme is proposed to estimate both motor speed and rotor resistance simultaneously using variable rotor flux. The rotor flux is given as sinusoidal waveform with an amplitude and a frequency without affecting precise torque control. Especially the proposed method makes the simultaneous estimation of rotor resistance and speed with high precision even though at the low speed area including a few rpm. Moreover, on-line identification of rotor resistance can be performed simply without calculating troublesome trigonometric functions and complicated integral computation. Therefore, the proposed system can be accomplished by using very cheap microprocessors for several applications. The results of the numerical simulations and experiments demonstrate that this method is effective to estimate the speed and on-line identification of rotor resistance for sensorless induction motors.

Comparison Study of On-line Rotor Resistance Estimators based on Alternate QD Model and Classical QD Model for Induction Motor Drives (유도전동기 드라이브에서의 대안모델과 일반표준모델에 기반한온라인 회전자저항 추정기의 성능 비교 연구)

  • Kwon, Chun-Ki;Kim, Dong-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • Most of rotor resistance estimators utilizes Classical qd Model (CQDM) and Alternate qd Model (AQDM). The rotor resistance estimators based on both models were shown to provide an accurate rotor resistance estimate under conditions where flux is constant such as a field-oriented control (FOC) based induction motor drives. Under the conditions where flux is varying such as a Maximum torque per amp (MTPA) control, AQDM based rotor resistance estimator estimates actual rotor resistance accurately even in different operating points. However, CQDM based rotor resistance estimator has not been investigated and its performance is questionable under condition where flux level is varying. Thus, in this work, the performance of CQDM based rotor resistance estimator was investigated and made comparisons with AQDM based estimator under conditions where flux level is significantly varying such as in MTPA control based induction motor drives. Unlike AQDM based estimator, the laboratory results show that the CQDM based estimator underestimates actual rotor resistance and exhibits an undesirable dip in the estimates in different operating points.

DECOUPLING CONTROL OF AN INDUCTION MOTOR WITH RECURSIVE ADAPTATION OF ROTOR RESISTANCE

  • Kim, Gyu-Sik;Kim, Jae-Yoon;Yim, Chung-Hyuk;Kim, Joohn-Sheok
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.23-28
    • /
    • 1998
  • We propose a nonlinear feedback controller that can control the induction motors with high dynamic performance by means of decoupling of motor speed and rotor flux. The nonlinear feedback controller needs the information on some motor parameters. Among them, rotor resistance varies greatly with machine temperature. A new recursive adaptation algorithm for rotor resistance which can be applied to our nonlinear feedback controller is also presented in this paper. The recursive adaptation algorithm makes the estimated value of rotor resistance track its real value. Some simulation results show that the adaptation algorithm for rotor resistance is robust against the variation of stator resistance and mutual inductance. In addition, it is computationally simple and has small estimation errors. To demonstrate the practical significance of our results, we present some experimental results.

  • PDF

A New Rotor Resistance Identification Algorithm for Induction Motors (새로운 유도전동기의 회전자저항 추정 알고리즘)

  • Kim, Gyu-Sik
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.303-306
    • /
    • 1994
  • This paper presents a new rotor resistance identification algorithm for induction motors. The algorithm is derived form the fact that the slip frequency given in the d-q rotating frame is equal to that measured in the x-y fixed frame. Rotor resistance varies greatly with the machine temperature. In certain cases, the rotor resistance can increase 100 % over its ambient or nominal value. This deteriorates the dynamic performance of vector control systems for induction motors. However, the control scheme proposed in this paper is robust with respect to variations in rotor resistance because an efficient identification algorithm for rotor resistance is employed. To illuminate the performance of the proposed controller further, the simulation results are presented.

  • PDF

Parameter Estimation for Vector Control of Induction Motors without Speed Sensors (속도센서 없는 유도전동기 백터제어 시스템의 파라메타 추정)

  • Kim, Sang-Uk;Kwon, Young-Gil;Kim, Young-Jo;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1997.07f
    • /
    • pp.2088-2090
    • /
    • 1997
  • This paper consists of the speed sensorless vector control of induction motors with the estimation of rotor resistance. In the application of variable-speed induction motor drives, if an inaccurate rotor resistance is used because the rotor resistance can change due to skin effects and temperature variables, it is difficult to achieve a collect field orientation. In this paper, to overcome these difficulties adaptive algorithm is designed for rotor resistance identification. The proposed adaptive algorithm for rotor resistance estimation in the synchronous reference frame is applied by sliding mode current controller satisfing persistent excitation(PE) condition. Adaptive flux observer is here used for the purpose of estimating rotor flux and speed in the speed sensorless scheme. Computer simulations are carried out to verify the validity of the proposed algorithm.

  • PDF