• Title/Summary/Keyword: rotor core

Search Result 186, Processing Time 0.031 seconds

Computations of Losses and Temperatures in the Core Ends of a High Voltage Turbo-generator

  • Liu Yujing;Hjarne Stig
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.4
    • /
    • pp.299-305
    • /
    • 2005
  • The work described in this paper is to investigate the additional iron losses and consequent temperatures in core ends of a turbo-generator wound with high voltage cables. Electromagnetic calculations are made with 3D FE models, which include the lamination material with anisotropic properties both in magnetic permeability and electric conductivity. The models also include the geometry of the stator teeth and eventually the axial steps designated to reduce the core end losses. The 3D model of the rotor consists of field windings with straight in-slot parts and end windings. The thermal models are simplified into two dimensions and include the heat sources dumped from the 3D electromagnetic solutions. The influences of power factor on additional iron losses are studied for this cable wound machine and conventional machines. The calculation results show that the additional iron losses can be reduced to about $15\%$ by introducing some small steps around the airgap corner of core ends.

Flow Characteristics of Fine Particles for Separated Device Shapes (분리장치의 형상에 따른 미립자 유동특성)

  • Hwang, Seon Kyeong;Lee, Seoung Soo;Jung, Hyo Sang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.5
    • /
    • pp.544-551
    • /
    • 2013
  • Recently high speed mixer, which is mixing, grinding, dispersion for liquid-liquid material, has been widely used several industries such as food, cosmetics, pharmaceuticals, fine chemicals, electronic material. This high speed mixer has a core element part called particle separation device. Particle separation device, which makes mixed liquid and liquid material using shear forces from a rotor and a stator, is a decisive factor in the distributed parts. In this study, we examined the velocity distribution of the two models of particle separation device using computation fluid dynamics, so that we were able to see the difference of the velocity distribution according to the shape. Also, by experiment, we observed that the use of rotor-screen type is deemed more suitable in case of accurately considering the effect of improving of the dispersibility through the circulation of the future.

A Loss-Minimization Nonlinear Torque Control for Electrical Vehicle Induction Motors (전기자동차용 유도전동기의 에너지 손실을 최소화하는 비선형 토크 제어기 설계)

  • Jang, Jin-Su;Han, Byung-Jo;Hwang, Young-Ho;Kim, Hong-Pil;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.1838-1839
    • /
    • 2006
  • In this paper, a loss-minimization nonlinear torque control for Electrical Vehicle(EV) induction motors is proposed. To improve the efficiency of the induction motors, it is important to find the optimal flux reference that minimize power losses. The proposed optimal flux reference is derived using a power loss function that is constructed with stator resistance losses, rotor resistance losses and core losses. And the time-varying load torque and the rotor resistance variation are considered in the power loss function. An algorithm that identifying the load torque is used. The rotor flux observer is used to obtain an accurate flux value regardless of the rotor resistance variation. Simulation results show a significant reduction in energy losses.

  • PDF

Evolution of Tip Vortices Generated by Two Bladed Rotor in Hover at Early Wake Ages

  • Park, Byung-Ho;Han, Yong-Oun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.10 no.2
    • /
    • pp.106-116
    • /
    • 2009
  • In order to investigate change of vortex structures and its evolving proceses, two dimensional LDV system was used for measurement of velocity vectors of tip vortex, and PIV system was also used for visualizations of tip vortex array for two bladed rotor, respectively. Experiments provided vortex locations, tangential and axial velocity components of tip vortex at six wake ages of 9.5, 10.5, 60.5, 99.5, 129.5, 169.5 and corresponded six wake ages shifted with 180 degrees per each. It was resulted that tip vortices generated by the first blade satisfy Landgrebe's model for their vortex locations even after they were accelerated by the second blade in downstream. Tangential velocity components of tip vortices follow Vatistas' n=2 model on both inside and outside regions of rotor slipstream without loss of vortex circulation. Axial velocity profiles revealed that there were small but significant perturbations just outside the primary vortex core which implies the second blade affects the wake substantially. It was also found that tip paths of each blade were not willing to be coincided intrinsically.

Design and Control of 3 D.O.F. Spherical Actuator Using the Magnetic Force of the Electromagnets (전자석의 자기력 제어를 이용한 구형 3 자유도 액추에이터의 설계 및 제어)

  • Baek, Yun-Su;Yang, Chang-Il;Park, Jun-Hyeok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.9
    • /
    • pp.1341-1349
    • /
    • 2001
  • In this paper, 3 D.O.F. actuator, which has three degrees of freedom in one joint, is proposed. The proposed 3 D.O.F. spherical actuator is composed of the rotor and atator. The upper plate of the stator supports the rotor and five electromagnets are located at the base of the stator. The rotor has two permanent magnets, and each rotational axis of the rotor gimbal system is supported by the bearing. To find out the governing equations for the torque generation, Coulombs law and Lorentz force with respect to magnetism is applied. As the experimental results, if the distance between electromagnet and permanent maget is far enough, the force between these magnets can be expressed from current of coils and z-axial distance. For the purpose of control 3 D.O.F. actuator, PID control law is applied. The experimental results are presented to show the validity of the proposed 3 D.O.F. actuator.

Design and Analysis of a Segmental Rotor Type 12/8 Switched Reluctance Motor

  • Zhang, Hongtao;Lee, Dong-Hee;Lee, Chee-Woo;Ahn, Jin-Woo
    • Journal of Power Electronics
    • /
    • v.14 no.5
    • /
    • pp.866-873
    • /
    • 2014
  • In this paper, a novel 12/8 segmental rotor type switched reluctance motor (SRM) is proposed for cooling fan applications. Unlike conventional structures, the rotor of the proposed structure is constructed from a series of discrete segments, and the stator is constructed from two types of stator poles: exciting and auxiliary poles. Moreover, in this structure, short flux paths are taken and no flux reversion exists in the stator. While the auxiliary poles are not wound by the windings, which only provide the flux return path. When compared with the conventional SRM, the proposed structure increases the electrical utilization of the machine and decreases the core losses, which may lead to a higher efficiency. To verify the proposed structure, the finite element method (FEM) and Matlab-Simulink are employed to get the static and dynamic characteristics of the proposed SRM. Finally, a prototype of the proposed motor was tested for characteristic comparisons.

Comparison of the Characteristics in the Surface Mounted Permanent Magnet and Flux Concentrating Coaxial Magnetic Gears Having the Solid Cores

  • Shin, Ho-Min;Chang, Jung-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1275-1284
    • /
    • 2018
  • The coaxial magnetic gear with the flux concentrating structure is known that it has the torque performance advantage over the coaxial magnetic gear having surface mounted permanent magnet, thanks to the flux focusing effect. But, if the solid cores are used in the modulating pieces and rotor cores to consider the mechanical reliability and cost reduction, the operating torque of the flux concentrating coaxial magnetic gear can be significantly diminished because the iron losses at the solid cores affect the actual transmitted torque. Furthermore, the modulating pieces and rotor cores have different characteristics of the iron losses from one another, because the space harmonic components of the magnetic flux density, which cause the iron losses, are different. Thus, in this paper, we focused on the analysis of the characteristics of the space harmonic components of the magnetic flux density and resultant eddy current losses in the surface mounted PM and flux concentrating coaxial magnetic gears, when these coaxial magnetic gears have the solid cores at the modulating pieces and rotor cores. The characteristics of pull-out torque (static torque), operating torque (dynamic torque), and efficiency are also researched, and compared by the 3D finite element analysis (FEA) and experiment.

Performance Analysis of a Desiccant Rotor for Rotational Period in a Desiccant Cooling System (제습냉방시스템의 제습로터 회전주기변화에 따른 제습성능해석)

  • Pi, Chang-Hun;Kang, Byung-Ha;Chang, Young-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.5
    • /
    • pp.523-531
    • /
    • 2012
  • The performance simulation of a desiccant rotor, which is a core component of a desiccant cooling system, was conducted on the basis of a theoretical solution of the heat and mass transfer process in the rotor. The simulation model was validated by comparing simulation results with experimental data; reasonable agreement was observed. The effect of the rotation speed on the performance of the desiccant rotor was investigated for various operation conditions: temperature (50 to $70^{\circ}C$), humidity ratio (0.01 to 0.02 kg/kg DA), and flow rate of regeneration air. The optimum rotation speed was determined from the maximum moisture removal capacity (MRC) of the desiccant rotor, and it was found to vary with the operation conditions. Further, the correlation for the optimum rotation speed was determined by regression analysis.

A Comparative Study on the Structural Characteristics of the Novel Two-Phase 8/6 Switched Reluctance Machine (새로운 2상 8/6 SRM의 구조적 특성에 관한 비교 연구)

  • Lee, Cheewoo;Hwang, Hongsik;Oh, Seok-Gyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.2
    • /
    • pp.315-322
    • /
    • 2017
  • This study presents a novel two­phase eight stator poles and six rotor poles (8/6) switched reluctance machine (SRM) that can compensate for the vibration and noise problems of two­phase 6/3 SRM and compare the characteristics of two SRMs. In the case of two­phase 6/3 SRM, the short flux path and the flux direction inside the stator are not reversed, so they have high efficiency characteristics. However, the use of three rotor poles causes problems of vibration and noise because the radial force applied to the rotor poles is not balance. The proposed two­phase 8/6 SRM has advantages of 6/3 SRM such as the flux­reversal­free stator and it can improve vibration and noise by using six rotor poles due to balanced radial force acting on the rotor poles. In order to make a reasonable comparison between two SRMs, the electromagnetic field structure of 8/6 SRM is designed to have equivalent torque characteristic to 6/3 SRM and then the copper loss and core loss are compared and analyzed. Finally, we compare the effieicney of two SRMs using finite element analysis and compare the distribution of radial force acting on the rotor poles based on Maxwell's stress method.

Comparison and Analysis on magnetic structures of Switched Reluctance Motors (Switched Reluctance Motor의 자기적 구조에 대한 비교 해석)

  • Oh, Seok-Gyu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.1
    • /
    • pp.131-141
    • /
    • 2016
  • SRM is designed to meet operating standards such as low cost, simple magnetic structure, a desired operating speed range, high efficiency, high performance, and good matching for DC power. The magnetic flux of SRM is independent of its direction to develop a torque and it allows the flexible characteristics of the magnetic structure for SRM. In this paper, SRM can widely classify two types, Radial-Flux SRM and Axial-Flux SRM, according to the flux direction. Radial-Flux SRM includes Conventional, Segmented stator and rotor, and Double stator SRM, etc. and Axial-Flux SRM includes C-core stator and the Axial-airgap SRM. This paper is subjected the basic characteristics to select the best of the magnetic structure of SRM in the appropriate application by the classification of SRM.