• Title/Summary/Keyword: rotational surface

Search Result 395, Processing Time 0.028 seconds

An Experimental Study of Nonlinear Viscoelastic Bushing Model for Torsional Mode (비선형 점탄성 부싱모델의 회전방향모드에 대한 실험적 연구)

  • Lee, Seong-Beom;Lee, Sung-Jae;Jun, Sung-Chul;Song, Dong-Ryul;Jeong, Jae-Young;Park, Chan-Seok;Lee, Woo-Hyun
    • Elastomers and Composites
    • /
    • v.43 no.1
    • /
    • pp.25-30
    • /
    • 2008
  • A bushing is a device used in automotive suspension systems to reduce the load transmitted from the wheel to the frame of the vehicle. A bushing is a hollow cylinder, which is bonded to a solid steel shaft at its inner surface and a steel sleeve at its outer surface. The relation between the force and moment applied to the shaft and the relative deformation and rotational angle of a bushing exhibits features of viscoelasticity. Since a moment-rotational angle relation for a bushing is important for multibody dynamics numerical simulations, the simple relation between the moment and rotational angle has been derived from experiment. It is shown that the predictions by the proposed moment-rotational angle relation are in very good agreement with the experimental results.

Condition Monitoring of Low Speed Slewing Bearings Based on Ensemble Empirical Mode Decomposition Method

  • Caesarendra, W.;Park, J.H.;Choi, B.H.;Kosasih, P.B.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.388-393
    • /
    • 2012
  • Vibration condition monitoring at low rotational speeds is still a challenge. Acoustic emission (AE) is the most used technique when dealing with low speed bearings. At low rotational speeds, the energy induced from surface contact between raceway and rolling elements is very weak and sometimes buried by interference frequencies. This kind of issue is difficult to solve using vibration monitoring. Therefore some researchers utilize artificial damage on inner race or outer race to simplify the case. This paper presents vibration signal analysis of low speed slewing bearings running at a low rotational speed of 15 rpm. The natural damage data from industrial practice is used. The fault frequencies of bearings are difficult to identify using a power spectrum. Therefore the relatively improved method of empirical mode decomposition (EMD), ensemble EMD (EEMD) is employed. The result is can detect the fault frequencies when the FFT fail to do it.

  • PDF

High-speed Machining Technology using CNC Machining Center Equipped with Attachment Type High-Speed Spindle (CNC 공작기계 장착형 고속스핀들을 이용한 고속가공 실용화 기술)

  • Lee, Yong-Chul;Kwak, Tae-Soo;Kim, Gyung-Nyun;Lee, Jong-Ryul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.2
    • /
    • pp.152-158
    • /
    • 2012
  • A newly developed attachment type high-speed spindle can be easily attached to the conventional CNC machining center to allow high-speed machining with low investment costs. This study has focused on the application of a conventional CNC machining center equipped with an attachment type high-speed spindle. A specimen of plastic mold material has been machined to compare the cutting effectiveness of the high-speed machining center and the conventional machining center with the attachment type high-speed spindle respectively. The rotational accuracy of the spindles are measured by a transmission optic measurement system and the surface roughness of the workpiece in accordance with revolution speed(rpm) of the spindle are investigated respectively. As the experimental results, it was shown that the surface roughness of the machined workpiece was $3.42{\mu}mR_{max}$, $0.46{\mu}mR_a$ in the case of attachment type spindle and $1.81{\mu}mR_{max}$, $0.275{\mu}mR_a$ in the case of the high-speed machining center. Moreover, the mean rotational accuracy was $7.57{\mu}m$ in the case of the attachment type spindle and $7.39{\mu}m$ in the case of the high-speed machining center.

Numerical Study of Turbine Blade Surface Gas Temperature with Various RPM and Pyro Starter Pressure (파이로 시동기의 압력변화와 터빈 블레이드 회전수 변화에 따른 충동형 터빈 블레이드 입구의 가스온도 분포 해석)

  • Lee, In-Chul;Byun, Yong-Woo;Koo, Ja-Ye;Lee, Sang-Do;Kim, Kui-Soon;Moon, In-Sang;Lee, Soo-Young
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.94-97
    • /
    • 2008
  • As the partial admission turbine has a intrinsically unsteady and three dimensional flow region, numerical calculation time of these study has been too long time. The numerical analysis for gas temperature of turbine blade surface has been performed to investigate development of temperature with various pyro start pressure. Computations have been carried out several turbine rotational speeds in the range from 0 to 16000 rpm and inlet conditions with 1423K, 7.2MPa. As a result, the more rotational speed and pyro starter pressure of turbine increased, the more turbine blade's temperature decreased. It is also found that flow field of turbine blade inlet area at pyro starter pressure of 5.75MPa and rotational speed of 12100 rpm formed surface temperature uniformly.

  • PDF

SURFACE CHANCE OF EXTERNAL HEXAGON OF IMPLANT FIXTURE AND INTERNAL HEXAGON OF ABUTMENT AFTER REPEATED DELIVERY AND REMOVAL OF ABUTMENT (지대주의 반복적인 착탈에 따른 임플랜트 고정체의 external hexagon과 지대주 internal hexagon의 변화에 관한 연구)

  • Jung Seok-Won;Kim Hee-Jung;Chung Chae-Heon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.43 no.4
    • /
    • pp.528-543
    • /
    • 2005
  • Statement of problem: Repeated delivery and removal of abutment cause some changes such as wear, scratch or defect of hexagonal structure. It may increase the value of rotational freedom(RF) between hexagonal structures. Purpose: The purpose of this study was to evaluate surface changes and rotational freedom between the external hexagon of the implant fixture and internal hexagon of abutment after repeated delivery and removal under SEM and toolmaker's microscope. Materials and methods: Implant systems used for this study were 3i and Avana. Seven pail's of implant fixture, abutment and abutment screws for each system were selected and all fixtures were perpendicularly mounted in liquid unsaturated polyesther with dental surveyor. Each one was embedded beneath the platform of fixture. Surfaces of hexagonal structure before repeated closing and opening of abutment were observed using SEM and rotational freedom was measured by using toolmaker's microscope. Each abutment was secured to the implant future by each abutment screw with recommended torque value using a digital torque controller and was repeatedly delivered and removed by 20 times respectively. After experiment, evaluation for the change of hexagonal structures and measurement of rotational freedom were performed. Result : The results were as follows; 1. Wear of contact area between implant fixture and abutment was considerable in both 3i and Avana system. Scratches and defects were frequently observed at the line-angle of hexagonal structures of implant fixture and abutment. 2. In the SEM view of the external hexagon of implant fixture, the point-angle areas at the corner edge of hexagon were severely worn out in both systems. It was more notable in the case of 3i systems than in that of Avana systems. 3. In the SEM view of the internal hexagon of abutment, Gingi-Hue abutment of 3i systems showed severe wear in micro-stop contacts that were machined into the corners to prevent rotation and cemented abutment of Avana systems showed wear in both surface area adjacent to the corner mating with external hexagon of implant fixture. 4 The mean values of rotational freedom between the external hexagon of the implant fixture and internal hexagon of abutment were 0.48$\pm$0.04$^{\circ}$ in pre-tested 3i systems and 1.18$\pm$0.25$^{\circ}$ after test, and 1.80$\pm$0.04$^{\circ}$ in pre-tested Avana systems and 2.61$\pm$0.16$^{\circ}$ after test. 5. Changes of rotational freedom after test shouted statistical)y a significant increase in both 3i and Avana systems(P<0.05, paired t-test). 6. Statistically, there was no significant difference between amount of increase in the rotational freedom of 3i systems and amount of increase in that of Avana ones(P>0.05, unpaired t-test). Conclusion: Conclusively, it was considered that repeated delivery and remove of abutment by 20 times would not have influence on screw joint stability. However, it caused statistically the significant change of rotational freedom in tested systems. Therefore, it is suggested that repeated delivery and remove of abutment should be minimal as possible as it could be and be done carefully Additionally, it is suggested that the means or treatment to prevent the wear of mating components should be devised.

Analysis on Electric Field Distribution of Dielectric Considering Surface or Volume Resistivity By Charge Simulation Method (전하 중첩법을 이용한 표면 저항 또는 체적 저항을 고려한 유전체의 전계 분포해석)

  • Min, S.W.;Kim, Y.J.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1987-1989
    • /
    • 2000
  • In this paper, electric field distribution of dielectric sphere considering surface or volume resistivity is analysed by the use of rotational symmetric charge simulation method. We applied three methods such as ${\alpha},{\beta}$ modified $\beta$ method to check electric field calculation error. We find f method and modified $\beta$ method are suitable to simulate volume and surface resistivity respectively.

  • PDF

Development of Highly Accurate Inspection System for Cylindrical Aluminum Casts with Microscopic Defects

  • Shinji, Ohyama;Hong, Keum-Shik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.35.3-35
    • /
    • 2001
  • Developed is an optical auto-inspection system to detect some microscopic defects on the Inside surface of the hydraulic automobile brakes at the production line. A small cylindrical detection module with a solid laser source at its center has two rings of optical fibers to separately collect light reflected and scattered from the defects on the surface. The cylindrical brake part rotates with respect to the detection module that will move parallel to the rotational axis of the cylinder. Thus, the optical module can scan the whole inside surface area. The automatic detection of the defects is to compare the intensity distributions ...

  • PDF

A Study on Extrusion Process of Cylindrical Product with Helical Fins Using Rotating Extrusion Die (회전압출다이를 사용한 헬리컬 핀붙이 원형단면 제품의 압출가공에 관한 연구)

  • Park S. M.;Jin I. T.
    • Transactions of Materials Processing
    • /
    • v.14 no.5 s.77
    • /
    • pp.444-451
    • /
    • 2005
  • A new extrusion process of the circular section product with helical fins could be developed by rotating extrusion die. The twisting of extruded product is caused by the twisted conical die surface connecting the die entrance section and the die exit section linearly. But, until now, because the process has used fixed extrusion die, it needs high pressure in order to twist billet and form fin shape on the surface of billet. So, during extruding billet, in order not to twist billet, the extrusion die is needed to rotate itself instead of twisting of billet. It is known that it is possible to reduce extrusion load of product with helical fins by analysis and experiments using rotating die. And it is known that, through the extrusion load analysis by $DEFORM^{TM}-3D$ software, optimal rotational velocity of rotating die can be obtained according to reduction ratio of area and twisted angle of die. And experiments and analysis using rotating extrusion die show that the twisted angle of product can be controlled by twisted angle of extrusion helical die and the rotational velocity of extrusion helical die.

Numerical Study of Turbine Blade Surface Gas Temperature with Various RPM and Blade Edge Shape (터빈 블레이드 회전수 변화와 터빈 블레이드 엣지 형상 변화에 따른 표면 가스온도 분포 해석)

  • Lee, In-Chul;Byun, Yong-Woo;Koo, Ja-Ye;Lee, Sang-Do;Kim, Kui-Soon;Moon, In-Sang;Lee, Soo-Young
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.49-52
    • /
    • 2008
  • The numerical analysis for gas temperature of turbine blade surface has been performed to investigate development of temperature with various blade edge shape. Two different types of the turbine which one is "Sharp" edge and the other is "Round" edge was modeled. Computations have been carried out several turbine rotational speeds in the range from 0 to 10,000 rpm for the each types of turbine edge shape. As a result, the more rotational speed of turbine increased, the more turbine blade's temperature decreased. It is also found that the surface temperature of turbine blades for sharp type edge were lower than the round type edge.

  • PDF

Experimental Study for Enhancement of Material Strength In Cold Cross Wedge Rolling Process (냉간 전조압연 공정에서의 성형조건에 따른 재료의 물성변화분석)

  • Yoon D. J.;Kim I. H.;Choi S. O.;Lim S. J.;Lee H. W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.319-324
    • /
    • 2004
  • Cross wedge rolling process is utilized to manufacture multi-stepped axis symmetrical parts. This process is generally performed under high temperature conditions in order to induce serious deformation. But cold cross wedge rolling process has been rarely studied due to the limits of deformation. Recently, the cold cross wedge rolling process has been utilized to enhance the material strength in specified parts of manufactured products. In this paper, experimental researches were carried out with various forming conditions of cold cross wedge rolling process in order to suggest the design guidance to make preform for cold cross wedge rolling. The tensile strength and the surface hardness of specified region were compared to that of initial material with the variation of the area reduction and the rotational speed of rolling die. With respect to the area reduction, the maximum tensile strength was linearly increased and the surface hardness was rapidly increased within lower percent of area reduction. The surface hardness was saturated over the rotational die speed of 0.8 RPM.

  • PDF